Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.1.17

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors  

Yun, Su-Won (School of Mechanical Engineering, Pusan National University)
Song, Hannah (School of Mechanical Engineering, Pusan National University)
Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.1, 2015 , pp. 17-23 More about this Journal
Abstract
$Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.
Keywords
$Li_4Ti_5O_{12}$ (LTO); anode materials; doping; precursor solubility; Cr;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, 'A review of advanced and practical lithium battery materials', J. of Mater. Chem., 21, 9938 (2011).   DOI   ScienceOn
2 V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy & Environmental Science, 4, 9, 3243 (2011).   DOI   ScienceOn
3 E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, 'Synthesis of single crystalline spinel $LiMn_2O_4$ nanowires for a lithium ion battery with high power density', Nano lett., 9, 1045 (2009).   DOI
4 T. Ohzuku, and Y. Makimura, 'Layered Lithium Insertion Material of $LiNi_{1/2}Mn_{1/2}O_2$: A Possible Alternative to $LiCoO_2$ for Advanced Lithium-Ion Batteries', Chemistry Lett., 8, 744 (2001).
5 T. Ohzuku, A. Ueda, and N. Yamamoto, 'Zero Strain Insertion Material of Li [$Li_{1/3}Ti_{5/3}$]$O_4$ for Rechargeable Lithium Cells', J. of the Electrochem. Soc., 142, 1431 (1995).   DOI
6 W. Lu, I. Belharouak, J. Liu, and K. Amine, 'Electrochemical and Thermal Investigation of $Li_{4/3}Ti_{5/3}O_4$ Spinel', J. of The Electrochem. Soc., 154, A114 (2007).   DOI
7 A. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode', Chemistry of Materials, 22, 2857 (2010).   DOI   ScienceOn
8 L. Zhao, Y. S. Hu, H. Li, Z. Wang, and L. Chen, 'Porous $Li_4Ti_5O_{12}$ Coated with N-Doped Carbon from Ionic Liquids for LiIon Batteries', Advanced Materials, 23, 1385 (2011).   DOI
9 Y. J. Hao, Q.-Y. Lai, J. Z. Lu, and X. Y. Ji, 'Effects of dopant on the electrochemical properties of $Li_4Ti_5O_{12}$ anode materials', Ionics, 13, 369 (2007).   DOI
10 S. Ji, J. Zhang, W. Wang, Y. Huang, Z. Feng, Z. Zhang, and Z. Tang, 'Preparation and effects of Mg-doping on the electrochemical properties of spinel $Li_4Ti_5O_{12}$ as anode material for lithium ion battery', Materials chemistry and physics, 123, 510 (2010).   DOI   ScienceOn
11 D. Capsoni, M. Bini, V. Massarotti, P. Mustarelli, S. Ferrari, G. Chiodelli, M. C. Mozzati, and P. Galinetto, 'Cr and Ni doping of $Li_4Ti_5O_{12}$: cation distribution and functional properties', The Journal of Physical Chemistry C, 113, 19664 (2009).   DOI
12 H. Song, S. W. Yun, H. H. Chun, M. G. Kim, K. Y. Chung, H. S. Kim, B. W. Cho, and Y. T. Kim, 'Anomalous decrease in structural disorder due to charge redistribution in Cr-doped $Li_4Ti_5O_{12}$ negative-electrode materials for high-rate Li-ion batteries', Energy & Environmental Science, 5, 9903 (2012).   DOI
13 K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries', J. of the Electrochem. Soc., 145, 3135 (1998).   DOI
14 P. P. Prosini, R. Mancini, L. Petrucci, V. Contini, and P. Villano, '$Li_4Ti_5O_{12}$ as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications', Solid State Ionics, 144, 185 (2001).   DOI
15 J. B. Kim, D. J. Kim, K. Y. Chung, D. Byun, and B. W. Cho, 'Research on carbon-coated $Li_4Ti_5O_{12}$ material for lithium ion batteries', Physica Scripta, 2010, 014026 (2010).
16 Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode', Chem. of Mat., 22, 2857 (2010).   DOI   ScienceOn
17 Y. Hao, Q.-Y. Lai, D. Liu, Z.-U. Xu, and X. Ji, 'Synthesis by citric acid sol-gel method and electrochemical properties of $Li_4Ti_5O_{12}$ anode material for lithium-ion battery', Mat. Chem. and Phys., 94, 382, (2005).   DOI
18 C.-M. Shen, X.-G. Zhang, Y.-K. Zhou, and H.-L. Li, 'Preparation and characterization of nanocrystalline $Li_4Ti_5O_{12}$ by sol-gel method', Mat. chem. and phys., 78, 437 (2003).   DOI
19 Y. Li, G. Pan, J. Liu, and X. Gao, 'Preparation of $Li_4Ti_5O_{12}$ nanorods as anode materials for lithium-ion batteries', J. of the Electrochem. Soc., 156, A495 (2009).   DOI
20 D. Jugovi', and D. Uskokovi', 'A review of recent developments in the synthesis procedures of lithium iron phosphate powders', J. of Power Sources, 190, 538 (2009).   DOI   ScienceOn
21 M. M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, 'Effect of surface carbon structure on the electrochemical performance of $LiFePO_4$' Electrochemical and solidstate lett., 6, A207 (2003).   DOI
22 H. Y. Xu, H. Wang, Z. Q. Song, Y. W. Wang, H. Yan, and M. Yoshimura, 'Novel chemical method for synthesis of $LiV_3O_8$ nanorods as cathode materials for lithium ion batteries', Electrochimica Acta, 49, 349 (2004).   DOI
23 V. Murugan, T. Muraliganth, and A. Manthiram, 'Comparison of microwave assisted solvothermal and hydrothermal syntheses of $LiFePO_4$/C nanocomposite cathodes for lithium ion batteries', The J. of Phys. Chem. C, 112, 14665 (2008).
24 R. T. Shannon and C. Prewitt, 'Revised values of effective ionic radii', Acta Crystallographica Section B: Structural Crystallography and Crystal Chem., 26, 1046 (1970).   DOI
25 Ahn, S. H. Oh, J. H. Kim, B. W. Cho, and H. S. Kim, 'The effect of vanadium precursors on the electrochemical performance of $Li_{1. 1}V_{0. 9}O_2$ as an anode material for Li-ion batteries', J. of Electroceramics, 32, 390 (2014).   DOI
26 M. Kalbe, M. Zukalov & L. Kavan, 'Phase-pure nanocrystalline $Li_4Ti_5O_{12}$ for a lithium-ion battery', J. of Solid State Electrochem., 8, 2 (2003).   DOI
27 T. Ohzuku, A. Ueda, and N. Yamamoto, 'Zero Strain Insertion Material of Li [$Li_{1/3}Ti_{5/3}$] $O_4$ for Rechargeable Lithium Cells', J. of the Electrochem. Soc., 142, 1431 (1995).   DOI
28 J. J. Rehr, R. C. Albers, 'Theoretical approaches to x-ray absorption fine structure', Reviews of Modern Phys., 72, 621 (2000).   DOI
29 K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, 'Electrochemical study of $Li_4Ti_5O_{12}$ as negative electrode for Li-ion polymer rechargeable batteries', J. of Power Sources, 81, 300 (1999).