Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.4.229

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure  

Kong, Ki Chun (Department of chemical engineering, Hong ik University)
Ju, Jeh Beck (Department of chemical engineering, Hong ik University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.4, 2014 , pp. 229-236 More about this Journal
Abstract
In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.
Keywords
Lithium ion battery; $LiFePO_4$; conductive carbon; additive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sebastian Kraas, Annalena Vijn, Mareike Falk, Boris Ufer, Bjoern Luerssen, Jurgen Janek, Michael Froba, Solid State Chemistry 1, 24 (2014).
2 A.K. Padhi, K. S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997).   DOI   ScienceOn
3 A. Yamada, et al., J. Power Source, 119, 232 (2003).
4 D. Mogan, A. Van der Ven, and G. Cender, Electroche. Solis-State Lett., 7, A30 (2004).   DOI   ScienceOn
5 M.S. Whittingham, Y. Song, S. Lutta, P. Y. Zavalij, and N.A. Cheronva, J. Mater. Chem., 15, 3362 (2005).   DOI   ScienceOn
6 A. Yamada and S.-C. Chung, J. Electrochem. Soc., 148, A960 (2001).   DOI   ScienceOn
7 A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc., 144, 1609 (1997).   DOI   ScienceOn
8 S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater 1, 123 (2002).   DOI   ScienceOn
9 J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics 36, 53 (1989).   DOI
10 Y. Shimakawas, T. Numata, J. Tabuchi, J. Solid State Chem., 131, 138 (1997).   DOI   ScienceOn
11 H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid State Lett., 4, A170 (2001).   DOI   ScienceOn
12 A.D. Spong, G. Vitins, J.R. Owen, J. Electrochem. Soc., 152, A2376 (2005).   DOI   ScienceOn
13 A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc., 144 (1997).
14 K. Zaghib, J. Shim, A. Guer, P. Charest, K.A. Striebel, Electrochem. Solid State Lett., 8, A207 (2005).   DOI