Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.2.86

Template Synthesis of Ordered-Mesoporous Tin Oxide for Lithium-ion Battery Anode Materials  

Seo, Gyeongju (School of Applied Chemical Engineering, Chonnam National University)
Choi, Jaecheol (Dept. of Chemical and Biological Eng., Hanbat National University)
Lee, Yong Min (Dept. of Chemical and Biological Eng., Hanbat National University)
Ko, Chang Hyun (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.2, 2014 , pp. 86-93 More about this Journal
Abstract
Mesoporous tin oxide (meso-$SnO_2$) with 5 nm mesopore and well-aligned $SnO_2$ nanowire-bundles with 5~7 nm diameters were prepared by template synthesis method. In addition to meso-$SnO_2$, meso-$SnO_2$/$SiO_2$, which has almost the same structure as meso-$SnO_2$ including $SiO_2$ used as the template were prepared by the modification of template synthesis. X-ray diffraction, N2 adsorption-desorption isotherms, transmission electron microscopy observed structures of meso-$SnO_2$ and meso-$SnO_2$/$SiO_2$. Although the meso-$SnO_2$/$SiO_2$ showed some positive evidences to suppress the volume change of meso-$SnO_2$ through cyclic voltammogram, electrochemical impedance spectroscopy, and voltage profiles during cycling, its cycle life was not improved highly to address modified structural effects. Thus, further study might be done to control the nanostructure of meso-$SnO_2$/$SiO_2$ for enhanced cycle performance.
Keywords
$SnO_2$; Anode materials; Mesoporous material; Template synthesis; Lithium-ion batteries;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. W. Lou, D. Deng, J. Y. Lee, and L. A. Archer, 'Thermal formation of mesoporous single-crystal $Co_3O_4$ nano-needles and their lithium storage properties', J. Mater. Chem., 18, 4397 (2008).   DOI
2 H. Kim and J. Cho, 'Hard templating synthesis of mesoporous and nanowire $SnO_2$ lithium battery anode materials', J. Mater. Chem., 18, 771 (2008).   DOI   ScienceOn
3 S. J. Han, B. C. Jang, T. Kim, S. M. Oh, and T. Hyeon, 'Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes', Adv. Funct. Mater., 15, 1845 (2005).   DOI   ScienceOn
4 Q. R. Zhao, Y. Xie, T. Dong, Z. G. Zhang, 'OxidationCrystallization Process of Colloids: An Effective Approach for the Morphology Controllable Synthesis of $SnO_2$ Hollow Spheres and Rod Bundles', J. Phys. Chem. B, 111, 11598 (2007).
5 H. M. Liu, Y. G. Wang, K. X. Wang, E. Hosono, and H. S. Zhou, 'Design and synthesis of a novel nanothorn $VO_2(B)$ hollow microsphere and their application in lithium-ion batteries', J. Mater. Chem., 19, 2835 (2009).   DOI   ScienceOn
6 X. W. Lou, C. M. Li, and L. A. Archer, 'Designed Synthesis of Coaxial $SnO_2$@carbon Hollow Nanospheres for Highly Reversible Lithium Storage' Adv. Mater., 21, 2536 (2009).   DOI   ScienceOn
7 C.-M. Wang, W. Xu, J. Liu, J.-G. Zhang, L. V. Saraf, B. W. Arey, D. Choi, Z.-G. Yang, and J. Xiao, S. Thevuthasan and D. R. Baer, 'In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a $SnO_2$ Nanowire during Lithium Intercalation', Nano Lett., 11, 1874 (2011).   DOI   ScienceOn
8 X. W. Lou, J. S. Chen, P. Chen, and L. A. Archer, 'Onepot synthesis of carbon-coated $SnO_2$ nanocolloids with improved reversible lithium storage properties', Chem. Mater., 21, 2868 (2009).   DOI   ScienceOn
9 T.-H. Kang, H.-S. Kim, W.-I. Cho, B.-W. Cho, and J.-B. Ju, 'The cycling performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery', J. Korean Electrochem. Soc., 5(2), 52-56 (2002).   DOI   ScienceOn
10 J. Gao, M. A. Lowe, and H. C. D. Abruna, 'Spongelike Nanosized $Mn_3O_4$ as a High-Capacity Anode Material for Rechargeable Lithium Batteries', Chem. Mater., 23, 3223 (2011).   DOI   ScienceOn
11 Y. He, L. Huang, J.-S. Cai, X. M. Zheng, and S. G. Sun, 'Structure and electrochemical performance of nanostructured $Fe_3O_4$/carbon nanotube composites as anodes for lithium ion batteries' Electrochim. Acta, 55, 1140 (2010).   DOI   ScienceOn
12 S. A. Needham, G. X. Wang, and H. K. Liu, 'Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries' J. Power Sources, 159, 254 (2006).   DOI   ScienceOn
13 H. Liu, G. Wang, J. Liu, S. Qiao, and H. Ahn, 'Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance' J. Mater. Chem., 21, 3046 (2011).   DOI   ScienceOn
14 M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. R. Subba, and B. V. R. Chowdari, ${\alpha}$-$Fe_2O_3$ Nanoflakes as an Anode Material for Li-Ion Batteries' Adv. Funct. Mater., 17, 2792 (2007).   DOI   ScienceOn
15 J. C. Park, J. Kim, H. Kwon, and H. Song,' Gram-Scale Synthesis of $Cu_2O$ Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials' Adv. Mater., 21, 803 (2009).   DOI   ScienceOn
16 K. T. Lee, Y. S. Jung, and S. M. Oh, 'Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries', J. Am. Chem. Soc., 125, 5652 (2003).   DOI   ScienceOn
17 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, 'Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores', Science, 279, 548(1998).   DOI   ScienceOn
18 T.-W. Kim, F. Kleitz, B. Paul, and R. Ryoo, 'MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock CopolymerButanolWater System', J. Am. Chem. Soc., 127, 7601 (2005).   DOI   ScienceOn
19 X. K. Wang, Z. Q. Li, Q. Li, C. B. Wang, A. L. Chen, Z. W. Zhang, R. H. Fan, and L. W. Yin, 'Ordered mesoporous $SnO_2$ with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance', CrystEngComm., 15, 3696, (2013).   DOI   ScienceOn
20 A. Kay and M. Gratzel 'Dye-Sensitized CoreShell Nanocrystals: Improved Efficiency of Mesoporous Tin oxide Electrodes Coated with a Thin Layer of an Insulating Oxide', Chemistry of Materials, 14, 2930 (2002).   DOI   ScienceOn
21 L. Yuan, K. Konstaninov, G. X. Wang, H. K. Liu, S. X. Dou, 'Nano-structured $SnO_2$-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries', Journal of Power Sources, 146, 180-184 (2005).   DOI   ScienceOn
22 D. Deng and J. Y. Lee, 'Hollow Core-Shell Mesospheres of Crystalline $SnO_2$ Nanoparticle Aggregates for High Capacity $Li^+$ Ion Storage', Chem. Mater., 20, 1841 (2008).   DOI   ScienceOn
23 B. Scrosati, J. Hassoun, and Y.-K. Sun, 'Lithium-ion batteries. A look into the future' Energy Environ. Sci., 4, 3287 (2011).   DOI   ScienceOn
24 F. Jiao, J. Bao, A. H. Hill, and P. G. Bruce, 'Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries', Angew. Chem., Int. Ed., 47, 9711 (2008).   DOI   ScienceOn
25 H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, and Y. L. Cao, 'Multilayered nanocrystalline $SnO_2$ hollow microspheres synthesized by chemically induced selfassembly in the hydrothermal environment', J. Phys. Chem. B, 111, 14067 (2007).
26 H. Wang, Q. Pan, J. Zhao, G. Yin, and P. Zuo, 'Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries' J. Power Sources, 167, 206 (2007).   DOI   ScienceOn
27 C.-H. Jeong, S.-A. Kim, B.-W. Cho, and B.-K. Na 'Electrochemical Characteristics of Sn Added $Li_4Ti_5O_{12}$ as an Anode Material', J. Korean Electrochem. Soc., 14, 16-21 (2011).   과학기술학회마을   DOI   ScienceOn
28 M. A. J. Aragon, B. Leon, C. P. Vicente, J. L. Tirado, A.V. Chadwick, A. Berko, and S. Y. Beh, 'Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries' Chem. Mater., 21, 1834 (2009).   DOI   ScienceOn
29 J. F. Ye, H. J. Zhang, R. Yang, X. G. Lim, and L. M. Qi, 'Morphology-Controlled Synthesis of $SnO_2$ Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries' Small, 6, 296 (2010).   DOI   ScienceOn
30 X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, and L. A. Archer, 'Template-Free Synthesis of $SnO_2$ Hollow Nanostructures with High Lithium Storage Capacity' Adv. Mater., 18, 2325 (2006).   DOI   ScienceOn
31 L.-F. Cui, Y. Yang, C.-M. Hsu, and Y. Cui, 'CarbonSilicon CoreShell Nanowires as High Capacity Electrode for Lithium Ion Batteries' Nano Lett., 9, 3370 (2009).   DOI   ScienceOn
32 B. M. Bang, J. I. Lee, H. Kim, J. Cho, and S. Park, 'High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching' Adv. Energy Mater., 2, 878 (2012).   DOI   ScienceOn
33 M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou, and H. K. Liu, 'The Effect of Morphological Modification on the Electrochemical Properties of $SnO_2$ Nanomaterials' Adv. Funct. Mater., 18, 455 (2008).   DOI
34 Z. Wen, Q. Wang, Q. Zhang, and J. Li, Adv. Funct. Mater., 17, 2772 (2007).   DOI
35 N. A. Kaskhedikar, Maier, 'Lithium Storage in Carbon Nanostructures', Adv. Mater., 21, 2664 (2009).   DOI   ScienceOn
36 X. Fang, B. Guo, Y. Shi, B. Li, C. Hua, C. Yao, Y. Zhang, Y. S. Hu, and Z. Wang, G. D. Stucky, and L. Chen,' Enhanced Li storage performance of ordered mesoporous $MoO_2$ via tungsten doping' Nanoscale, 4, 1541 (2012).   DOI   ScienceOn
37 J. S. Beck, J. C. V., W. J. Roth, M. E. Leonowicz, C. T. Kresge, C. T.-W. C. K. D. Schmitt, D. H. Olson, E. W. Sheppard, S. B. McCullen, and J. B. Higgins, 'A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates', J. Am. Chem. Soc., 114, 10834, (1992).   DOI   ScienceOn
38 C. Peng, B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, and J. Yang, 'Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity' ACS Nano, 6, 1074 (2012).   DOI   ScienceOn