Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.2.119

Consideration on the Non-linearity of Warburg Impedance for Fourier Transform Electrochemical Impedance Spectroscopy  

Chang, Byoung-Yong (Department of Chemistry, Pukyong National University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.2, 2014 , pp. 119-123 More about this Journal
Abstract
Here I report on how Fourier Transform Electrochemical Impedance Spectroscopy (FTEIS) overcomes the potential-current linearity problem encountered in the impedance calculation process. FTEIS was first invented to solve the time-related drawback of the conventional impedance technique. The dramatic time reduction of FTEIS enabled the real-time impedance measurement but brought about the linearity problem at the same time. While the conventional method circumvents the problem using the steady-state made by a sufficiently long measurement time, FTEIS cannot because of its real-time function. However, according to the mathematical development reported in this article, the potential step used in FTEIS is proved to avoid the linearity problem. During the step period, the potential and the current are linearized by the electrochemical impedance. Also, Fourier transform of the differentiated potential and current is proved to give the same result of the original ones.
Keywords
Impedance Spectroscopy; Electrochemistry Theory; Warburg Impedance;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J.-Y. Park, Y.-S. Lee, B.-Y. Chang, S. Karthikeyan, K.S. Kim, B.H. Kim and S.-M. Park, Anal. Chem. 81, 3843-3850 (2009).   DOI   ScienceOn
2 J.-Y. Park, Y.-s. Lee, B.-Y. Chang, B.H. Kim, S. Jeon and S.-M. Park, Anal. Chem. 82, 8342-8348 (2010).   DOI   ScienceOn
3 R. Jurczakowski and A. Lasia, Anal. Chem. 76, 5033-5038 (2004).   DOI   ScienceOn
4 A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2002).
5 A. Lasia, Electrochemical Impedance Spectroscopy and its applications. In Modern Aspects of Electrochemistry, White, R. E.; Conway, B. E.; Bockris, J. O. M., Eds. Plenum Press: New York, 1999; Vol. 32.
6 E. Barsoukov and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2ed. Wiley-Interscience, (2005).
7 K.-M. Nam, D.-H. Shin, N. Jung, M.G. Joo, S. Jeon, S.-M. Park and B.-Y. Chang, Analytical Chemistry 85, 2246-2252 (2013).   DOI   ScienceOn
8 P. Delahay and G. Mamantov, Anal. Chem. 27, 478-483 (1955).   DOI
9 P. Delahay, J. Am. Chem. Soc. 75, 1430-1435 (1953).   DOI
10 A.M. Bond, N.W. Duffy, S.-X. Guo, J. Zhang and D. Elton, Anal. Chem. 77, 186A-195A (2005).
11 G.A. Ragoisha and A.S. Bondarenko, Electrochemistry Communications 5, 392-395 (2003).   DOI   ScienceOn
12 S.M. Park and J.S. Yoo, Anal. Chem. 75, 455A-461A (2003).
13 B.-Y. Chang and S.-M. Park, Anal. Chem. 79, 4892-4899 (2007).   DOI   ScienceOn
14 B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207-229 (2010).   DOI   ScienceOn
15 H. Cho and D.-Y. Yoon, J. Korean Electrochem. Soc. 16, 217-224 (2013).   DOI   ScienceOn
16 J. Chun, S.K. Jeon and J.H. Chun, J. Korean Electrochem. Soc. 16, 211-216 (2013).   DOI   ScienceOn
17 S.K. Kim, T.Y. Kang, G.S. Cha, H. Nam and J.H. Shin, J. Korean Electrochem. Soc. 15, 242-248 (2012).   DOI   ScienceOn
18 M. Sluyters-Rehbach and J.H. Sluyters, J. Electroanal. Chem. 102, 415-419 (1979).   DOI   ScienceOn
19 Z.B. Stoynov, Electrochim. Acta 37, 2357-2359 (1992).   DOI   ScienceOn
20 U. Jo, Y.-I. Kim, J.-K. Yoon, J.-J. Yoo and H.-N. Yoon, J. Korean Electrochem. Soc. 16, 129-137 (2013).   DOI   ScienceOn
21 H. Cho and D.-Y. Yoon, J. Korean Electrochem. Soc. 15, 165-171 (2012).   DOI   ScienceOn
22 E. Kreyzig, Advanced Engineering Mathematics. 10ed. Laurie Rosatone, Jefferson City (2011).