Browse > Article
http://dx.doi.org/10.5229/JKES.2013.17.1.30

Development of GDH-glucose Sensor using Ferrate Complex  

Choi, Young-Bong (Department of chemistry, College of Advanced Science, Dankook University)
Lee, Jung-Min (Department of chemistry, College of Advanced Science, Dankook University)
Kim, Samantha Saeyoung (Gyeonggi Suwon International School)
Kim, Hyug-Han (Department of chemistry, College of Advanced Science, Dankook University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.1, 2014 , pp. 30-36 More about this Journal
Abstract
Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.
Keywords
Glucose sensor; Glucose dehydrogenase (GDH); Pentacyanoferrate; Gold nano-particles (AuNPs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962).
2 A. L. Crumbliss, H. A. O Hill, and D. J. Page, 'The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system' J. Electroanal. Chem. Interfacial Electrochem., 206, 327 (1986).   DOI   ScienceOn
3 M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985).   DOI   ScienceOn
4 D. A. Gough, J. Y. Lucisano, and P. H. S. Tse, 'Two-dimensional enzyme electrode sensor for glucose' Anal. Chem., 57, 2351 (1985).   DOI   ScienceOn
5 A. P. F. Turner, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985).
6 K. Mckenna and A. Brajter-Toth, 'Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines' Anal. Chem., 59, 954 (1987).   DOI   ScienceOn
7 P. D. Hale and T. A. Skotheim, 'Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/galactose systems' Synth. Met., 28, 853 (1989).   DOI   ScienceOn
8 B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991).   DOI
9 E. H. Piepmeier Jr., C. Hammett-Stabler, M. E. Price, G. B. Kemper, and M. G. Davis Jr., 'Atmospheric pressure effects on glucose monitoring devices' Diabetes Care., 18, 423 (1995).
10 B. P. Giordano, W. Thrash, L. Hollenbaugh, W. P. Dube, C. Hodges, A. Swain, C. R. Banion, G. L. Klingensmith, 'Performance of seven blood glucose testing systems at high altitude.' Diabetes Educ., 15, 444 (1989).   DOI
11 O. Pecchio, S. Maule, M. Migliardi, M. Trento, and M. Veglio, 'Effects of exposure at an altitude of 3,000 m on performance of glucose meters' Diabetes Care., 23, 129, (2000).
12 K. Moore, N. Vizzard, C. Coleman, J. McMahon, R. Hayes, and C. J. Thompson, 'Extreme altitude mountaineering and type 1 diabetes: the Diabetes Federation of Ireland Kilimanjaro Expedition' Diabet Med., 18, 749 (2001).   DOI   ScienceOn
13 J. F. Gautier, A. X. Bigard, P. Douce, A. Duvallet, and G. Cathelineau, 'Influence of simulated altitude on the performance of five blood glucose meters' Diabetes Care., 19, 1430 (1996).   DOI   ScienceOn
14 C. Barnett, F. Ryan, and L. Ballonoff, 'Effect of altitude on the self-monitoring of blood-glucose' Diabetes., 36 (Suppl. 1), 117A (1987).
15 M. S. Vreeke, K. T. Yong, and A. Heller, 'A Thermostable Hydrogen Peroxide Sensor Based on "Wiring" of Soybean Peroxidase' Anal. Chem., 67, 4247 (1995).   DOI
16 S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, 'Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes' J. Chem. Soc. Dalton Trans., 2247 (1985).
17 R. M. Ianiello, T. J. Lindsay, and A. M. Yacynych, 'Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes' Anal. Chem., 54, 1098 (1982).   DOI
18 O. Miyawaki and L. B. Wingard, Jr., 'Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon' Biotech. Bioeng., 26, 1364 (1984).   DOI   ScienceOn
19 M. N. Zafar, N. Beden, D. Leech, C. Sygmund, R. Ludwig, and L. Gorton, 'Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells' Anal. Bioanal. Chem., 402, 2069 (2012).   DOI
20 C. Taylor, G. Kenausis, I. Katakis, and A. Heller, '"Wiring" of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4,4{\prime}-dimethoxy-2,2{\prime}-bipyridine)Cl]^{+/2+}$' J. Electroanal. Chem., 396, 511 (1995).   DOI   ScienceOn
21 T. J. ohara, R. Rajagopalan, and A. Heller, 'Glucose electrodes based on cross-linked bis(2,2'-bipyridine) $chloroosmium^{(+/2+)}$ complexed poly(1-vinylimidazole) films' Anal.Chem., 65, 3512 (1993).   DOI   ScienceOn
22 C. H Nieh, S. Tsujimura, O. Shirai, and K. Kano, 'Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis' J. Electroanal. Chem., 689, 26 (2013)   DOI   ScienceOn
23 G. Binyamin, J. Cole, and A. Heller, 'Mechanical and Electrochemical Characteristics of Composites of Wired Glucose Oxidase and Hydrophilic Graphite' J. Electrochem. Soc., 147, 2780 (2000).   DOI   ScienceOn
24 M. V. Pishko, A. C. Michael, and Adam Heller, 'Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels' Anal. Chem., 63, 2269 (1991).
25 H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H. C. Kim, 'Glucose sensor using a microfabricated electrode and electropolymerized bilayer films' Biosens. Bioelectron., 17, 251 (2002).   DOI   ScienceOn
26 T. J. Ohara, R. Rajagopalan, and A. Heller, ''Wired' enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances' Anal. Chem., 66, 2451 (1994).   DOI   ScienceOn
27 M. O. Finot, G. D. Braybrook, and M. T. McDermott, 'Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes' J. Electroanal. Chem., 466, 234, (1999).   DOI   ScienceOn
28 M. O. Finot and M. T. McDermott, 'Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes' J. Electroanal. Chem., 488, 125 (2000).   DOI   ScienceOn
29 Asep Rohiman, Isa Anshori, Akhmadi Surawijaya, and Irman Idris, 'Study of Colloidal Gold Synthesis Using Turkevich Method' AIP Conf. Proc., 1415, 39 (2011).
30 G. Binyamin and A. Heller, 'Stabilization of Wired Glucose Oxidase Anodes Rotationg at 1000 rpm at 37'. J. Electrochem. Soc., 146, 2965 (1999).   DOI
31 P. Calvert, P. Patra, and D. Duggal, 'Epoxy hydrogels as sensors and actuators' EAPAD., 6524, 65240M (2007).
32 E. Steckhan and T. Kuwana, 'Spectrochemical studu of mediators. I. Bipyridylium Salts and their electron transfer rates to cytochrome C.' Ber. Bunsenges. Phys. Chem., 89, 253 (1974).