Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.1.18

Fabrication of Pt-MWNT/Nafion Electrodes by Low-Temperature Decal Transfer Technique for Amperometric Hydrogen Detection  

Rashid, Muhammad (Department of Applied Chemistry, Hanyang University)
Jun, Tae-Sun (Department of Bionano Engineering, Hanyang University)
Kim, Yong Shin (Department of Applied Chemistry, Hanyang University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.1, 2014 , pp. 18-25 More about this Journal
Abstract
A Pt nanoparticle-decorated multiwall carbon nanotube (Pt-MWNT) electrode was prepared on Nafion by a hot-pressing at relatively low temperature. This electrode exhibited an intricate entangled, nanoporous structure as a result of gathering highly anisotropic Pt-MWNTs. Individual Pt nanoparticles were confirmed to have a polycrystalline face-centered cubic structure with an average crystal size of around 3.5 nm. From the cyclic voltammograms for hydrogen redox reactions, the Pt-MWNT electrode was found to have a similar electrochemical behavior to polycrystalline Pt, and a specific electrochemical surface area of $2170cm^2mg^{-1}$. Upon exposure to hydrogen analyte, the Pt-MWNT/Nafion electrode demon-strated a very high sensitivity of $3.60{\mu}A\;ppm^{-1}$ and an excellent linear response over the concentration range of 100-1000 ppm. Moreover, this electrode was also evaluated in terms of response and recovery times, reproducibility, and long-term stability. Obtained results revealed good sensing performance in hydrogen detection.
Keywords
Hydrogen sensor; Electrochemical gas sensor; Pt-MWNT electrode; Hot-pressing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-L. Lin, T. L. Yu, and F.-H. Han, 'A method for improving ionic conductivity of Nafion membranes and its application to PEMFC' J. Polym. Res. 13, 379 (2006).
2 G. Korotcenkov, S. D. Han, and J. R. Stetter, 'Review of electrochemical hydrogen sensors' Chem. Rev. 109, 1402 (2009).   DOI   ScienceOn
3 J. R. Stetter, and J. Li, 'Amperometric gas sensors-a review' Chem. Rev. 108, 352 (2008).   DOI   ScienceOn
4 F. Opekar, and K. Stulik, 'Electrochemical sensors with solid polymer electrolytes' Anal. Chim. Acta, 385, 151 (1999).   DOI   ScienceOn
5 Y. Iwai, and T. Yamanishi, 'Thermal stability of ionexchange Nafion N117CS membranes' Polym. Degrad. Stabil. 94, 679 (2009).   DOI   ScienceOn
6 Y. Wang, H. Yan, and E. Wang, 'Solid polymer electrolyte-based hydrogen sulfide sensor' Sens. Actuators B-Chem. 87, 115 (2002).   DOI   ScienceOn
7 Z. Q. Ma, P. Cheng, and T. S. Zhao, 'A palladium-alloy deposited Nafion membrane for direct methanol fuel cells' J. Membrane Science, 215, 327 (2003).   DOI   ScienceOn
8 M. Shen, S. Roy, and K. Scott, 'Preparation and characterisation of Pt deposition on ion conducting membrane for direct methanol fuel cell electrodes' J. App. Electrochemistry, 35, 1103 (2005).   DOI
9 B.-J. Hwang, Y.-C. Liu, and Y. L. Chen, 'Characteristics of Pt/Nafion electrodes prepared by a Takenata-Torikai method in sensing hydrogen' Mater. Chem. Phys. 69, 267 (2001).   DOI   ScienceOn
10 P. Millet, R. Durand, E, Dartyge, G. Tourillon, and A. Fontaine, 'Precipitation of metallic platinum into Nation ionomer membranes' J. Electrochem. Soc. 140, 1373 (1993).   DOI   ScienceOn
11 Y.-C. Weng, and K.-C. Hung, 'Amperometric hydrogen sensor based on $Pt_xPd_y$/Nafion electrode prepared by Takenata-Torikai method' Sens. Actuators B-Chem. 141, 161 (2009).   DOI   ScienceOn
12 G. Gao, G. Yang, M. Xu, C. Wang, C. Xu, and H. Li, 'Simple synthesis of Pt nanoparticles on noncovalent functional MWNT surfaces: application in ethanol electrocatalysis' J. Power Sources 173, 178 (2007).   DOI   ScienceOn
13 M. Sakthivel, and W. Weppner, 'Development of a hydrogen sensor based on solid polymer electrolyte membranes' Sens. Actuators B-Chem. 113, 998 (2006).   DOI   ScienceOn
14 B.-J. Hwang, Y.-C. Liu, and W. C. Hsu, 'Nafion-based solid-state gas sensors: Pt/Nafion electrodes prepared by an impregnation-reduction method in sensing oxygen' J. Solid State Electrochem. 2, 378 (1998).   DOI
15 M. Rashid, T.-S. Jun, Y. S. Kim, 'Material properties of the Pt electrode deposited on Nafion membrane by the impregnation-reduction method' J. Nanosci. Nanotechnol. 12, 5967 (2012).   DOI
16 D. Rathod, C. Dickinson, D. Egan, and E. Dempsey, 'Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing' Sens. Actuators B-Chem. 143, 547 (2010).   DOI   ScienceOn
17 J. H. Cho, J. M. Kim, J. Prabhuram, S. Y. Hwang, D. J. Ahn, H. Y. Ha, and S.-K. Kim, 'Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells' J. Power Sources 187, 378 (2009).   DOI   ScienceOn
18 D. Wen, X. Zou, Y. Liu, L. Shang, and S. J. Dong, 'Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing' Talanta 79, 1233 (2009).   DOI   ScienceOn
19 J. C. Claussen, S. S. Kim, A. Haque, M. S. Artiles, D. M. Porterfield, and T. S. Fisher, 'Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes' J. Diabetes Sci. Technol. 4, 312 (2010).   DOI   ScienceOn
20 D.-D. La, C. K. Kim, T. S. Jun, Y. Jung, G. H. Seong, J. Choo, and Y. S. Kim, 'Pt nanoparticle-supported multiwall carbon nanotube electrodes for amperometric hydrogen detection' Sens. Actuators B-Chem. 155, 191 (2011).   DOI   ScienceOn
21 D. Zhan, J. Velmurugan, M. V. Mirkin, 'Adsorption/desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover' J. Am. Chem. Soc. 131, 14756 (2009).   DOI   ScienceOn
22 Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, 'Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution' Chem. Eur. J. 12, 2542 (2006).   DOI   ScienceOn
23 B. E. Conway, and H. Angerstein-Kozlowska, 'Electrochemical study of multiple-state adsorption in monolayers' Acc. Chem. Res. 14, 49 (1981).   DOI
24 D. Chen, Q. Tao, L. W. Liao, S. X. Liu, Y. X. Chen, and S. Ye, 'Determining the active surface area for various platinum electrodes' Electrocatal, 2, 207 (2011).   DOI
25 T. Frelink, W. Visscher, and J. A. R. van Veen, 'The third anodic hydrogen peak on platinum: subsurface $H_2$ adsorption' Electrochim. Acta, 40, 545 (1995).   DOI   ScienceOn
26 V. A. Sethuraman, J. W. Weidner, A. T. Haug, L. V. Protsailo, 'Durability of perfluorosulfonic acid and hydrocarbon membranes: effect of humidity and temperature' J. Electrochem. Soc. 155, B119 (2008).   DOI   ScienceOn
27 Y. Zhao, X. Yang, J. Tian, F. Wang, and L. Zhan, 'A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electrooxidation' J. Power Sources, 195, 4634 (2010).   DOI   ScienceOn
28 R. Liu, W.-H. Her, and P. S. Fedkiw, 'In situ electrode formation on a Nation membrane by chemical platinization' J. Electrochem. Soc. 139, 15 (1992).   DOI
29 Y.-C. Liu, B.-J. Hwang, and I.-J. Tzeng, 'Solid-state amperometric hydrogen sensor using Pt/C/Nafion composite electrodes prepared by a hot-pressed method' J. Electrochem. Soc. 149, H173 (2002).   DOI   ScienceOn