Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.3.99

Redox Pairs in Redox Flow Batteries  

Hwang, Byunghyun (Department of chemistry, Sangmyung University)
Kim, Ketack (Department of chemistry, Sangmyung University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.3, 2013 , pp. 99-110 More about this Journal
Abstract
Redox flow batteries are attractive energy-storage devices for renewable energy and peak-power energy control. Even though some prototypes are available already, many new materials are under development for new battery systems. In this reports, redox pairs and theirs properties are explained, by which one can understand issues with redox pairs, such as contaminations, cross-over, ionic selectivity, and solubility. Batteries that have the same redox pairs in both electrode compartments can be operated longer than those with different redox pairs due to the prevention form the cross-contamination. There are undivided redox flow batteries that have no membrane, which is another direction improving cycle life of the batteries.
Keywords
Redox flow batteries; Redox pairs; Secondary batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Hasegawa, A. Kimura, T. Yamamura and Y. Shiokawa, 'Estimation of energy efficiency in neptunium redox flow batteries by the standard rate constants', Journal of Physics and Chemistry of Solids, 66, 593 (2005).   DOI   ScienceOn
2 Y. Shiokawa, H. Yamana and H. Moriyama, 'An Application of Actinide Elements for a Redox Flow Battery', Journal of Nuclear Science and Technology, 37, 253 (2000).   DOI   ScienceOn
3 J. Jorn, J. T. Kim and D. Kralik, 'The zinc-chlorine battery: half-cell overpotential measurements', Journal of Applied Electrochemistry, 9, 573 (1979).   DOI
4 A. Paulenova, S. E. Creager, J. D. Navratil and Y. Wei, 'Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions', Journal of Power Sources, 109, 431 (2002).   DOI   ScienceOn
5 J.-H. Kim, K. J. Kim, M.-S. Park, N. J. Lee, U. Hwang, H. Kim and Y.-J. Kim, 'Development of metal-based electrodes for non-aqueous redox flow batteries', Electrochem. Commun., 13, 997 (2011).   DOI   ScienceOn
6 Q. Liu, A. A. Shinkle, Y. Li, C. W. Monroe, L. T. Thompson and A. E. S. Sleightholme, 'Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries', Electrochem. Commun., 12, 1634 (2010).   DOI   ScienceOn
7 A. E. S. Sleightholme, A. A. Shinkle, Q. Liu, Y. Li, C. W. Monroe and L. T. Thompson, 'Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries', Journal of Power Sources, 196, 5742 (2011).   DOI   ScienceOn
8 T. Yamamura, K. Shirasaki, Y. Shiokawa, Y. Nakamura and S. Y. Kim, 'Characterization of tetraketone ligands for active materials of all-uranium redox flow battery', Journal of Alloys and Compounds, 374, 349 (2004).   DOI   ScienceOn
9 K. Shirasaki, T. Yamamura and Y. Shiokawa, 'Electrolytic preparation, redox titration and stability of pentavalent state of uranyl tetraketonate in dimethyl sulfoxide', Journal of Alloys and Compounds, 408, 1296 (2006).
10 T. Yamamura, K. Shirasaki, D. X. Li and Y. Shiokawa, 'Electrochemical and spectroscopic investigations of uranium(III) with N,N,N',N'-tetramethylmalonamide in DMF', Journal of Alloys and Compounds, 418, 139 (2006).   DOI   ScienceOn
11 S.-H. Shin, S.-H. Yun and S.-H. Moon, 'A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective', RSC Advances, 3, 9095 (2013).   DOI   ScienceOn
12 J. Cheng, L. Zhang, Y.-S. Yang, Y.-H. Wen, G.-P. Cao and X.-D. Wang, 'Preliminary study of single flow zincnickel battery', Electrochem. Commun., 9, 2639 (2007).   DOI   ScienceOn
13 J. Cheng, Y.-H. Wen, G.-P. Cao and Y.-S. Yang, 'Influence of zinc ions in electrolytes on the stability of nickel oxide electrodes for single flow zincnickel batteries', Journal of Power Sources, 196, 1589 (2011).   DOI   ScienceOn
14 D. You, H. Zhang and J. Chen, 'A simple model for the vanadium redox battery', Electrochimica Acta, 54, 6827 (2009).   DOI   ScienceOn
15 C. P. Zhang, S. M. Sharkh, X. Li, F. C. Walsh, C. N. Zhang and J. C. Jiang, 'The performance of a soluble lead-acid flow battery and its comparison to a static leadacid battery', Energy Conversion and Management, 52, 3391 (2011).   DOI   ScienceOn
16 P. K. Leung, C. Ponce de Leon and F. C. Walsh, 'The influence of operational parameters on the performance of an undivided zinccerium flow battery', Electrochimica Acta, 80, 7 (2012).   DOI   ScienceOn
17 P. K. Leung, C. Ponce-de-Len, C. T. J. Low, A. A. Shah and F. C. Walsh, 'Characterization of a zinccerium flow battery', Journal of Power Sources, 196, 5174 (2011).   DOI   ScienceOn
18 T. Yamamura, Y. Shiokawa, H. Yamana and H. Moriyama, 'Electrochemical investigation of uranium $\beta$-diketonates for all-uranium redox flow battery', Electrochimica Acta, 48, 43 (2002).   DOI   ScienceOn
19 T. Yamamura, N. Watanabe and Y. Shiokawa, 'Energy efficiency of neptunium redox battery in comparison with vanadium battery', Journal of Alloys and Compounds, 408, 1260 (2006).
20 R. L. Clarke, US 2004/0202925 A1, (2004).
21 P. K. Leung, C. Ponce de Len, C. T. J. Low and F. C. Walsh, 'Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery', Electrochimica Acta, 56, 2145 (2011).   DOI   ScienceOn
22 R. P. Kreh, R. M. Spotnitz and J. T. Lundquist, 'Mediated electrochemical synthesis of aromatic aldehydes, ketones, and quinones using ceric methanesulfonate', The Journal of Organic Chemistry, 54, 1526 (1989).   DOI
23 D. J. Eustace, 'Bromine Complexation in Zinc-Bromine Circulating Batteries', Journal of The Electrochemical Society, 127, 528 (1980).   DOI
24 M. Skyllas-Kazacos, 'Novel vanadium chloride/polyhalide redox flow battery', Journal of Power Sources, 124, 299 (2003).   DOI   ScienceOn
25 H. Vafiadis and M. Skyllas-Kazacos, 'Evaluation of membranes for the novel vanadium bromine redox flow cell', Journal of Membrane Science, 279, 394 (2006).   DOI   ScienceOn
26 M. Skyllas-Kazacos, US 2004/020234843 A1, (2004).
27 D. Pletcher and R. Wills, 'A novel flow battery-A lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance', Journal of Power Sources, 149, 96 (2005).   DOI   ScienceOn
28 D. Pletcher, H. Zhou, G. Kear, C. T. J. Low, F. C. Walsh and R. G. A. Wills, 'A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II): Part VI. Studies of the lead dioxide positive electrode', Journal of Power Sources, 180, 630 (2008).   DOI   ScienceOn
29 A. Hazza, D. Pletcher and R. Wills, 'A novel flow battery -A lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives', Journal of Power Sources, 149, 103 (2005).   DOI   ScienceOn
30 X. Li, D. Pletcher and F. C. Walsh, 'A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode', Electrochimica Acta, 54, 4688 (2009).   DOI   ScienceOn
31 J. Collins, X. Li, D. Pletcher, R. Tangirala, D. Stratton- Campbell, F. C. Walsh and C. Zhang, 'A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide', Journal of Power Sources, 195, 2975 (2010).   DOI   ScienceOn
32 Y. Ito, M. Nyce, R. Plivelich, M. Klein, D. Steingart and S. Banerjee, 'Zinc morphology in zincnickel flow assisted batteries and impact on performance', Journal of Power Sources, 196, 2340 (2011).   DOI   ScienceOn
33 http://www.gildemeister.com.
34 M. Skyllas-Kazacos, C. Peng and M. Cheng, 'Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery', Electrochemical and Solid-State Letters, 2, 121 (1999).   DOI
35 G. Oriji, Y. Katayama and T. Miura, 'Investigation on V(IV)/V(V) species in a vanadium redox flow battery', Electrochimica Acta, 49, 3091 (2004).   DOI   ScienceOn
36 M. Skyllas-Kazacos, D. Kasherman, D. R. Hong and M. Kazacos, 'Characteristics and performance of 1 kW UNSW vanadium redox battery', Journal of Power Sources, 35, 399 (1991).   DOI   ScienceOn
37 M. Skyllas-Kazacos, G. Kazacos, G. Poon and H. Verseema, 'Recent advances with UNSW vanadiumbased redox flow batteries', International Journal of Energy Research, 34, 182 (2010).   DOI   ScienceOn
38 M. Skyllas-Kazacos, C. Menictas and M. Kazacos, 'Thermal Stability of Concentrated V(V) Electrolytes in the Vanadium Redox Cell', Journal of The Electrochemical Society, 143, L86 (1996).   DOI
39 M. Kazacos, M. Cheng and M. Skyllas-Kazacos, 'Vanadium redox cell electrolyte optimization studies', Journal of Applied Electrochemistry, 20, 463 (1990).   DOI
40 T. Mohammadi and M. Skyllas-Kazacos, 'Preparation of sulfonated composite membrane for vanadium redox flow battery applications', Journal of Membrane Science, 107, 35 (1995).   DOI   ScienceOn
41 T. Mohammadi and M. Skyllas-Kazacos, 'Characterisation of novel composite membrane for redox flow battery applications', Journal of Membrane Science, 98, 77 (1995).   DOI   ScienceOn
42 T. Mohammadi and M. S. Kazacos, 'Evaluation of the chemical stability of some membranes in vanadium solution', Journal of Applied Electrochemistry, 27, 153 (1997).   DOI   ScienceOn
43 X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu and L. Chen, 'Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery', Journal of Power Sources, 189, 1240 (2009).   DOI   ScienceOn
44 C. Jia, J. Liu and C. Yan, 'A significantly improved membrane for vanadium redox flow battery', Journal of Power Sources, 195, 4380 (2010).   DOI   ScienceOn
45 G. Codina and A. Aldaz, 'Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis', Journal of Applied Electrochemistry, 22, 668 (1992).   DOI
46 G. Codina, J. R. Perez, M. Lopez-Atalaya, J. L. Vasquez and A. Aldaz, 'Development of a 0.1 kW power accumulation pilot plant based on an Fe/Cr redox flow battery Part I. Considerations on flow-distribution design', Journal of Power Sources, 48, 293 (1994).   DOI   ScienceOn
47 M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez and A. Aldaz, 'Optimization studies on a Fe/Cr redox flow battery', Journal of Power Sources, 39, 147 (1992).   DOI   ScienceOn
48 M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez, A. Aldaz and M. A. Climent, 'Behaviour of the Cr(III)/ Cr(II) reaction on goldgraphite electrodes. Application to redox flow storage cell', Journal of Power Sources, 35, 225 (1991).   DOI   ScienceOn
49 F. C. Walsh, 'Electrochemical technology for environmental treatment and clean energy conversion', Pure and Applied Chemistry, 73, 1819 (2001).   DOI   ScienceOn
50 A. Price, S. Bartley, S. Male and G. Cooley, 'Novel approach to utility scale energy storage', Power Engineering Journal, 13, 122 (1999).   DOI
51 S. Licht and J. Davis, 'Disproportionation of aqueous sulfur and sulfide: Kinetics of polysulfide decomposition', Journal of Physical Chemistry B, 101, 2540 (1997).   DOI   ScienceOn
52 E. Sum and M. Skyllas-Kazacos, 'A study of the V(II)/ V(III) redox couple for redox flow cell applications', Journal of Power Sources, 15, 179 (1985).   DOI   ScienceOn
53 M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane and M. A. Green, 'New all-vanadium redox flow cell', Journal Name: J. Electrochem. Soc.; (United States); Journal Volume: 133, Medium: X; Size: Pages: 1057 (1986).   DOI
54 M. Skyllas-Kazacos and F. Grossmith, 'Efficient Vanadium Redox Flow Cell', Journal of The Electrochemical Society, 134, 2950 (1987).   DOI   ScienceOn
55 M. S.-K. a. R. Robins, 'All-vanadium redox battery', U.S. Pat. 4, 786, 567 (1986).
56 V. E. Brunini, Y.-M. Chiang and W. C. Carter, 'Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries', Electrochimica Acta, 69, 301 (2012).   DOI   ScienceOn
57 Y. Matsuda, K. Tanaka, M. Okada, Y. Takasu, M. Morita and T. Matsumura-Inoue, 'A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte', Journal of Applied Electrochemistry, 18, 909 (1988).   DOI
58 Q. Liu, A. E. S. Sleightholme, A. A. Shinkle, Y. Li and L. T. Thompson, 'Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries', Electrochem. Commun., 11, 2312 (2009).   DOI   ScienceOn
59 J. Mun, M.-J. Lee, J.-W. Park, D.-J. Oh, D.-Y. Lee and S.-G. Doo, 'Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2′-bipyridine) Complex Electrolyte', Electrochemical and Solid-State Letters, 15, A80 (2012).   DOI   ScienceOn
60 A. A. Shinkle, A. E. S. Sleightholme, L. D. Griffith, L. T. Thompson and C. W. Monroe, 'Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery', Journal of Power Sources, 206, 490 (2012).   DOI   ScienceOn
61 L. H. Thaller, 'Redox flow cell energy storage systems', Medium: X; Size: Pages: 12, (1979).
62 M. A. Hoberecht and L. H. Thaller, 'Performance mapping studies in Redox flow cells', Medium: X; Size: Pages: 12, (1981).
63 W. A. W. Russell B. Hodgdon, 'Anion permselective membrane', NASA-CR-167872, (1982).
64 R. B. H. Samuel S. Alexander, Warren A. Waite, 'Anion permselective membrane', NASA-CR-159599, (1979).
65 C. H. Bae, E. P. L. Roberts and R. A. W. Dryfe, 'Chromium redox couples for application to redox flow batteries', Electrochimica Acta, 48, 279 (2002).   DOI   ScienceOn
66 M. Bartolozzi, 'Development of redox flow batteries. A historical bibliography', Journal of Power Sources, 27, 219 (1989).   DOI   ScienceOn
67 G. Codina, G. Sanchez and A. Aldaz, 'Digital simulation of cyclic voltammetry on heterogenous electrodes', Electrochimica Acta, 36, 1129 (1991).   DOI   ScienceOn
68 C. Ponce de Len, A. Fras-Ferrer, J. Gonzlez-Garca, D. A. Sznto and F. C. Walsh, 'Redox flow cells for energy conversion', Journal of Power Sources, 160, 716 (2006).   DOI   ScienceOn
69 M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli and M. Saleem, 'Progress in Flow Battery Research and Development', Journal of The Electrochemical Society, 158, R55, (2011).   DOI   ScienceOn
70 A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick and Q. Liu, 'Redox flow batteries: a review', Journal of Applied Electrochemistry, 41, 1137 (2011).   DOI
71 H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, 'Progress in electrical energy storage system: A critical review', Progress in Natural Science, 19, 291 (2009).   DOI   ScienceOn
72 http://www.sandia.gov.
73 N. A. Chaniotakis, S. B. Park and M. E. Meyerhoff, 'Salicylate-selective membrane electrode based on tin(IV)-tetraphenylporphyrin', Analytical Chemistry, 61, 566 (1989).   DOI   ScienceOn
74 Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, 'Electrochemical Energy Storage for Green Grid', Chemical Reviews, 111, 3577 (2011).   DOI   ScienceOn
75 http://redflow.com.
76 G. Moritz, C. Muehle, M. Anerella, A. Ghosh, W. Sampson, P. Wanderer, E. Willen, N. Agapov, H. Khodzhibagiyan, A. Kovalenko, W. V. Hassenzahl and M. N. Wilson, 'Towards fast-pulsed superconducting synchrotron magnets', Particle Accelerator Conference, 2001. PAC 2001. Proceedings of the 2001, 1, 211 vol.1, (2001).
77 D. L. a. T. B. Reddt, 'handbook of batteries 3th', McGraw-Hill companies, Inc, 1454, (2001).