Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.1.9

Components in Zn Air Secondary Batteries  

Lee, Junghye (Department of Chemistry, Sangmyung University)
Kim, Ketack (Department of Chemistry, Sangmyung University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.1, 2013 , pp. 9-18 More about this Journal
Abstract
Components of zinc-air battery and their problems are explained. Energy density of zinc air battery is superior to other commercial ones including Li-ion batteries. Cycle life of the zinc air batteries is poor because of irreversible redox reactions on both electrodes. In order to improve the performance of the zinc air battery, catalysts, passivation, and the new structure of electrodes should be developed to optimize several reactions in an electrode. Multidisciplinary efforts, such as mechanics, corrosion science, composite materials are necessary from the beginning of the research to obtain a meaningful product.
Keywords
Metal air batteries; Zinc air batteries; Secondary batteries;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 E. Deiss, F. Holzer, and O. Haas, 'Modeling of an electrically rechargeable alkaline Zn-air battery', Electrochim. Acta, 47, 3995-4010 (2002).   DOI   ScienceOn
2 G. Q. Zhang and X. G. Zhang, 'MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells', Electrochim. Acta, 49, 873-877 (2004).   DOI   ScienceOn
3 T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, and M. Srinivasan, 'Silver nanoparticledecorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries', J. Power Sources, 195, 4350-4355 (2010).   DOI   ScienceOn
4 Y. Zhao, K. Watanabe, and K. Hashimoto, 'Poly(bis-2,6-diaminopyridinesulfoxide) as an active and stable electrocatalyst for oxygen reduction reaction', J. Mater. Chem., 22, 12263 (2012).   DOI   ScienceOn
5 X. Li, A. L. Zhu, W. Qu, H. Wang , R. Hui, L. Zhang, and J. Zhang, 'Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries', Electrochim. Acta, 55, 5891-5898 (2010).   DOI   ScienceOn
6 P. Sapkota and H. Kim, 'An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators', J. Ind. Eng. Chem., 16, 39-44 (2010).   DOI   ScienceOn
7 H. Zhang, J. Xiao, Z. Yang, H. Wang, G. Ma, and Z. Zhou, 'Ionic conduction in Zn 2+-doped ZrP 2O 7 ceramics at intermediate temperatures', Solid State Ionics, 218, 1-6 (2012).   DOI   ScienceOn
8 X. Li, W. Qu, J. Zhang, and H. Wang, 'Electrocatalytic Activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-Carbon Composites Toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes', J. Electrochem. Soc., 158, A597 (2011).   DOI   ScienceOn
9 J. Tulloch and S. W. Donne, 'Activity of perovskite La1xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes', J. Power Sources, 188, 359-366 (2009).   DOI   ScienceOn
10 S.-W. Eom, S.-Y. Ahn, I.-J. Kim, Y.-K. Sun, and H.-S. Kim, 'Electrochemical evaluation of La1- x Ca x CoO3 cathode material for zinc air batteries application', J. Electroceram., 23, 382-386 (2009).   DOI
11 J. Dobryszychi and S. Biallozor, 'On some organic inhibitors of zinc corrosion in alkaline media', Corros. Sci., 43, 1309-1319 (2001).   DOI   ScienceOn
12 M. Pourbaix, 'Atlas of Electrochemical Equlibria in Aqueous Solutions', National Association of Corrosion Engineers (1974).
13 Y. D. Cho and G. T. K. Fey, 'Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution', J. Power Sources, 184, 610-616 (2008).   DOI   ScienceOn
14 S. H. Lee, Y. J. Jeong, S. H. Lim, E. A. Lee, C. W. Yi, and K. Kim, 'The Stable Rechargeability of Secondary Zn-Air Batteries: Is It possible to recharge a Zn-air battery?', J. Korean Electrochem. Soc., 13, 45-49 (2010).   과학기술학회마을   DOI   ScienceOn
15 S. Muller, F. Holzer, and O. Haas, 'Optimized zinc electrode for the rechargeable zinc-air battery', J. Appl. Electrochem., 28, 895-898 (1998).   DOI   ScienceOn
16 C. C. Yang and S. J. Lin, 'Improvement of high-rate capability of alkaline Zn-MnO2 battery', J. Power Sources, 112, 174-183 (2002).   DOI   ScienceOn
17 Z. Adrianna and J.-N. Martin, 'Efficient air-breathing biocathodes for zinc/oxygen batteries', J. Power Sources, 228, 104-111 (2013).   DOI   ScienceOn
18 A. A. Mohamad, 'Zn/gelled 6M KOH/O2 zinc-air battery', J. Power Sources, 159, 752-757 (2006).   DOI   ScienceOn
19 P. Arora and Z. Zhang, 'Battery Separators', J. Am. Chem. Soc., 104, 4419-4462 (2004).
20 S. Zhu, Z. Chen, B. Li, H. Drew, H. Wang, H. Li, and Z. Chen, 'Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery', Electrochim. Acta, 56, 5080-5084 (2011).   DOI   ScienceOn
21 H. Saputra, R. Othman, A. G. E. Sutjipto, and R. Muhida, 'MCM-41 as a new separator material for electrochemical cell: Application in zinc-air system', J. Membr. Sci., 367, 152-157 (2011).   DOI   ScienceOn
22 M. Hanisah, O. Raihan, N. N. Anis, H. A. Mohd, and S. Hens, 'Observation On Pesponsive Ocv Variation Of Zinc-air Cell With Relative Humidity Content', IIUM Engineering Journal, 5 (2011).
23 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, 'Lithium-Air Battery: Promise and Challenges', J. Phys. Chem., 1, 2193-2203 (2010).
24 A. A. Mohamad, 'Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries', Corros. Sci., 50, 3475-3479 (2008).   DOI   ScienceOn
25 W. Li, C. Li, C. Zhou, H. Ma, and J. Chen, 'Metallic magnesium nano/mesoscale structures: their shapecontrolled preparation and mg/air battery applications', Angewandte Chemie, 45, 6009-12 (2006).   DOI   ScienceOn
26 S. R. Narayanan, P. G. K. Surya, A. Manohar, Y. Bo, S. Malkhandi, and K. Andrew, 'Materials challenges and technical approaches for realizing inexpensive and robust ironair batteries for large-scale energy storage', Solid State Ionics, 216, 105-109 (2012).   DOI   ScienceOn
27 V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, 'A review on air cathodes for zinc-air fuel cells', J. Power Sources, 195, 1271-1291 (2010).   DOI   ScienceOn
28 http://www.energizer.com.
29 P. Sapkota and H. Kim, 'Zinc-air fuel cell, a potential candidate for alternative energy', J. Ind. Eng. Chem., 15, 445-450 (2009).   DOI   ScienceOn
30 D. Linden and T. B. Reddy, 'Handbook of Batteries 3th', McGraw-Hill Companies, Inc., 1454 (2001).
31 G. W. Heise, 'Air depolarized primary battery', No. 49404 (1925).
32 C. Chakkarabarthy, A. K. Abdul Waheed, and H. V. K. Udupa, 'Zinc air alkaline battery-a review', J. Power Sources, 6, 203-228 (1981).   DOI   ScienceOn
33 K. R. Blurton and A. F. Sammells, 'Metal/air battery: Their status and potential-a riveiw', J. Power Sources, 4, 263-279 (1979).   DOI   ScienceOn
34 http://www.powerone-batteries.com.
35 http://www.durecell.com.
36 http://www.button-battery.com.
37 B. H. Ryou, US 2009/0142667 A1 (2009).
38 http://www.energizer.com, 'Zinc air prismatic handbook'
39 J. Goldstein, I. Brown and B. Koretz, 'New developments in the Electric Fuel Ltd. zinc/air system', J. Power Sources, 80, 171-179 (1999).   DOI   ScienceOn
40 http://www.electric-fuel.com.
41 Http://www.powerzinc.com.
42 S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, 'The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes', Electrochim. Acta, 52, 1592-1595 (2006).   DOI   ScienceOn
43 S. Stuart I. and Z. X. Gregory, 'A regenerative zinc-air fuel cell', J. Power Sources, 165, 897-904 (2007).   DOI   ScienceOn
44 C. Song and J. Zhang, 'Electrocatalytic Oxygen Reduction Reaction', Springer, 89-129 (2008).
45 Z. Chen, J. Y. Choi, H. Wang, H. Li, and Z. Chen, 'Highly durable and active non-precious air cathode catalyst for zinc air battery', J. Power Sources, 196, 3673-3677 (2011).   DOI   ScienceOn
46 J. Huot and E. Boubour, 'Electrochemical performance of gelled zinc alloy powders in alkaline solutions', J. Power Sources, 65, 81-85 (1997).   DOI   ScienceOn
47 C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, 'Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery', J. Power Sources, 160, 1436-1441 (2006).   DOI   ScienceOn
48 H. Yang, Y. Cao, X. Ai. and L. Xiao, 'Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives', J. Power Sources, 128, 97-101 (2004).   DOI   ScienceOn
49 C. H. Tzipi, Z. Yuli, and E. E. Yair, 'In situ STM studies of zinc in aqueous solutions containing PEG DiAcid inhibitor: Correlation with electrochemical performances of zinc-air fuel cells', J. Power Sources, 157, 584-591 (2006).   DOI   ScienceOn
50 J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, 'Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air', Adv. Energy Mater., 1, 34-50 (2011).   DOI   ScienceOn