Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.1.52

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes  

Choi, Jong-Ho (Department of New and Renewable Energy, Kyungil University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.1, 2013 , pp. 52-58 More about this Journal
Abstract
In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.
Keywords
Non-precious metal catalyst; Polyaniline; Cobalt; Oxygen reduction reaction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. S. Arico, S. Srinivasan, and V. Antonucci, 'DMFCs: From Fundamental Aspects to Technology Development', Fuel Cells, 1, 133 (2001).   DOI   ScienceOn
2 K. Kordesch and G. Simader, "Fuel Cells and their Applications" Wiley-VCH, Weinheim (1996).
3 S. Wasmus and A. Kuver, 'Methanol oxidation and direct methanol fuel cells: a selective review', J. Electroanal. Chem., 461, 14 (1999).   DOI   ScienceOn
4 M. P. Hogarth and G. A. Hards, 'Direct Methanol Fuel Cells: Technological Advances and Further requirements', Plat. Met. Rev., 40, 150 (1996).
5 D. J. Berger, 'Fuel cells and precious-metal catalysts', Science, 286, 49 (1999).
6 T. A. Semelsberger and R. L. Borup, 'Fuel effects on start-up energy and efficiency for automotive PEM fuel cell systems', Int. J. Hydrogen Energy, 30, 425 (2005).   DOI   ScienceOn
7 J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, 'Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions', J. Electrochem. Soc., 152, A1011 (2005).   DOI   ScienceOn
8 A. J. Appleby, 'Electrocatalysis of aqueous dioxygen reduction', J. Electroanal. Chem., 357, 117 (1993).   DOI   ScienceOn
9 M. Hayashi, H. Uemura, K. Shimanoe, N. Miura, and N. Yamazoe, 'Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode', J. Electrochem. Soc., 151, A158 (2004).   DOI   ScienceOn
10 J.-H. Choi, 'Effect of electrochemical reduction of ruthenium black cathode catalyst on the performance of polymer electrolyte membrane fuel cells', J. Kor. Electrochem. Soc., 14, 110 (2011).   과학기술학회마을   DOI   ScienceOn
11 N. Alonso-Vante, P. Bogdanoff, and H. Tributsch, 'On the origin of the selectivity of oxygen reduction of rutheniumcontaining electrocatalysts in methanol-containing electrolyte', J. Cat., 190, 240 (2000).   DOI   ScienceOn
12 T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. Alonso- Vante, and R. J. Behm, 'Oxygen reduction on $Ru_{1.92}$ $Mo_{0.08}SeO_{4}$, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes', J. Electrochem. Soc., 147, 2620 (2000).   DOI   ScienceOn
13 K. Kwon, 'Composition survey and analysis of non-Pt oxygen reduction catalysts for proton exchange membrane fuel cells', J. Kor. Electrochem. Soc., 15, 12 (2012)   과학기술학회마을   DOI   ScienceOn
14 M. Lefèvre, J. P. Dodelet, and P. Bertrand, '$O_{2}$ reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors', J. Phys. Chem. B, 104, 11238 (2000).   DOI   ScienceOn
15 G. Faubert, G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L.T. Wenga, P. Bertrand, and G. Dénès, 'Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells', Electrochim. Acta, 41, 1689 (1996).   DOI   ScienceOn
16 G. Lalande, G. Faubert, R. Cote, D. Guay, J. P. Dodelet, L.T. Weng, and P. Bertrand, 'Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells', J. Power Sources, 61, 227 (1996).   DOI   ScienceOn
17 M. Bron, J. Radnik, M. Fieber-Erdmann, P. Bogdanoff, and S. Fiechter, 'EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black', J. Electroanal. Chem., 535, 113 (2002).   DOI   ScienceOn
18 G. Faubert, R. Cote, J. P. Dodelet, M. Lefevre, and P. Bertrand, 'Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of $Fe^{(II)}$ acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride', Electrochim. Acta 44, 2589 (1999).   DOI   ScienceOn
19 S. L. Gojkovic, S. Gupta, and R. F. Savinell, 'Heattreated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction', J. Electroanal. Chem., 462, 63 (1999).   DOI   ScienceOn
20 S. Maldonado and K. J. Stevenson, 'Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction', J. Phys. Chem. B, 108, 11375 (2004).
21 G. Wu, Z. Chen, K. Artyushkova, F. H. Garzon, and P. Zelenay, 'Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode', ECS Trans., 16, 159 (2008).
22 G. Wu, C. Dai, D. Wang, D. Li, and N. Li, 'Nitrogendoped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells', J. Mater. Chem., 20, 3059 (2010).   DOI   ScienceOn
23 F. Jaouen, J. Herranz, M. Lefevre, J. P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov and E. A. Ustinov, 'Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction', ACS Appl. Materials & Interfaces, 1, 1623 (2009).   DOI   ScienceOn
24 V. Nallathambi, J. W. Lee, S. P. Kumaraguru, G. Wu, and B. N. Popov, 'Development of high performance carbon composite catalyst for oxygen reduction reaction in proton exchange membrane fuel cells', J. Power Sources, 183, 34 (2008).   DOI   ScienceOn
25 M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, 'Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells', Science, 324, 71 (2009).   DOI   ScienceOn
26 P. H. Matter, E. Wang, and U. S. Ozkan, 'Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from $SiO_{2}^{-}$ and $MgO^{-}$ supported metal particles', J. Catal., 243, 395 (2006).   DOI   ScienceOn
27 D. Villers, X. Jacques-Bedard, and J. P. Dodelet, 'Febased catalysts for oxygen reduction in PEM fuel cells: Pretreatment of the carbon support', J. Electrochem. Soc., 151, A1507 (2004).   DOI   ScienceOn
28 G. Wu, K. Artyushkova, M. Ferrandon, A.J. Kropf, D. Myers and P. Zelenay, 'Performance durability of polyaniline-derived non-precious cathode catalysts', ECS Trans., 25, 1299 (2009)
29 R. Bashyam and P. Zelenay, 'A class of non-precious metal composite catalysts for fuel cells', Nature, 443, 63 (2006).   DOI   ScienceOn
30 S. Khasim, S. C. Raghavendra, M. Revanasiddappa, K. C. Sajjian, M. Lakshmi and M. Faisal, 'Synthesis, characterization and magnetic properties of polyaniline/$\gamma$- $Fe_{2}O_{3}$ composites', Bull. Mater. Sci., 34, 1557 (2011).   DOI   ScienceOn
31 V. Prabhakaran, C. G. Arges, and V. Ramani, 'Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy', PNAS, 109, 1029 (2012).   DOI
32 M. Carmo, A. R. dos Santos, J. G. R. Poco, and M. Linardi, 'Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications', J. Power Sources, 173, 860 (2007).   DOI   ScienceOn
33 G. P. Glaspell, P. W. Jagodzinski, and A. Manivannan, 'Formation of cobalt nitrate hydrate, cobalt oxide, and cobalt nanoparticles using laser vaporization controlled condensation', J. Phys. Chem. B, 108, 9604 (2004).   DOI   ScienceOn
34 U. A. Paulus, T. J. Schmidt, H.A. Gasteiger, and R. J. Behm, 'Oxygen reduction on a high-surface area Pt/ Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study', J. Electroanal. Chem., 495, 134 (2001).   DOI   ScienceOn