Browse > Article
http://dx.doi.org/10.5229/JKES.2013.16.1.30

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry  

Ryu, Sung-Kwan (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER))
Choi, Young-Woo (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER))
Kim, Chang-Soo (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER))
Yang, Tae-Hyun (Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research (KIER))
Kim, Han-Sung (Department of Chemical Engineering, Yonsei University)
Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Publication Information
Journal of the Korean Electrochemical Society / v.16, no.1, 2013 , pp. 30-38 More about this Journal
Abstract
In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.
Keywords
High temperature polymer electrolyte fuel cell; Ionic liquid; Electrode; Electrochemistry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. H. J. Hogarth, J. C. Diniz da Costa, and G. Q.(Max) Lu, 'Solid acid membranes for high temperature (> $140^{\circ}C$) proton exchange membrane fuel cells', J. Power. Sources, 142, 223 (2005).   DOI   ScienceOn
2 J. Hu, H. Zhang, Y. Zhai, G. Liu, J. Hu, and B. Yi, 'Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis', Electrochim. Acta, 52, 394 (2006).   DOI   ScienceOn
3 A. S. Arico, A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua, and V. Antonucci, 'Performance and degradation of high temperature polymer electrolyte fuel cell catalysts', J. Power. Sources, 178, 525 (2008).   DOI   ScienceOn
4 J. Fuller, A. C. Breda, and R. T. Carlin, 'Ionic Liquid- Polymer Gel Electrolytes', J. Electrochem. Soc., 144, L67 (1997).   DOI
5 Z. Zhou, S. Li, Y. Zhang, M. Liu, and W. Li, 'Promotion of Proton Conduction in Polymer Electrolyte Membranes by 1H-1,2,3-Triazole', J. Am. Chem. Soc., 127, 10824 (2005).   DOI   ScienceOn
6 A. Schechter and R. F. Savinell, 'Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells', Solid State Ionics, 147, 181 (2002).   DOI   ScienceOn
7 J. Sun, L. R. Jordan, M. Forsyth, and D. R. MacFarlane, 'Acid-Organic base swollen polymer membranes', Electrochim. Acta, 46, 1703 (2001).   DOI   ScienceOn
8 K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, 'Imidazole and Pyrazole-base proton conducting polymers and liquids', Electrochim. Acta, 43, 1281 (1998).   DOI   ScienceOn
9 B. Singh and S. S. Sekhon, 'Ion conducting behaviour of polymer electrolytes containing ionic liquids' Chem. Phys. Lett., 34, 414, (2005).
10 M. Doyle, S.K. Choi, and G. Proulx, 'High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites', J. Electrochem. Soc., 147, 34 (2000).   DOI   ScienceOn
11 A. Lewandowski and A. Swinderski, 'New composite solid electrolytes based on a polymer and ionic liquids', Solid State Ionics, 169, 21 (2004).   DOI   ScienceOn
12 Q. Che, B. Sun, and R. He, 'Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride' Electrochim. Acta, 53, 4428 (2008).   DOI   ScienceOn
13 E. K. Cho, J. S. Park, S. S. Sekhon, G. G. Park, T. H. Yang, W. Y. Lee, C. S. Kim, and S. B. Park, 'A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells', J. Electrochem. Soc., 156 (2), B197 (2009).   DOI   ScienceOn
14 G. Sasikumar, J. W. Ihm, and H. Ryu, 'Dependence of optimum Nafion content in catalyst layer on platinum loading', J. Power Sources, 132,11 (2004).   DOI   ScienceOn
15 R. O'Hayre, S. W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals 2nd Ed., Wiley, p. 252 (2006).
16 Y. Y. Shao, G. P. Yin, and Y. Z, Gao, Chin. 'Electrochemical surface area enhanced by dimethyl ether (DME) electrooxidation', J. Inorg. Chem., 21, 1060 (2005).
17 R. M. Darling and J. P. Meyers, 'Kinetic Model of Platinum Dissolution in PEMFCs', J. Electrochem. Soc., 150, A1523 (2003).   DOI   ScienceOn
18 K. Kinoshita, J. T. Lundquist, and P. Stonehart, 'Potential cycling effects on platinum electrocatalyst surfaces', J. Electroanal. Chem. Interfacial Electrochem., 48, 157 (1973).   DOI   ScienceOn
19 R. Rajagopalan, A. Ponnaiyan, P. J. Mankidy, A. W. Brooks, B. Yi, and H. C. Foley, 'Molecular sieving platinum nanoparticle catalysts kinetically frozen in nanoporous carbon', Chem. Commun. (Cambridge), 21, 2498 (2004).
20 J. F. Liopis and F. Colom, In Encyclopedia of Electrochemistry of Elements, Vol. VI, (Ed: A. J. Bard), Marcel Dekker, New York, p. 169 (1976).
21 F. Rodriguez-Reinoso, 'The role of carbon materials in heterogeneous catalysis', Carbon, 36, 159 (1998).   DOI   ScienceOn
22 F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, and F. Rodriguez-Reinoso, 'Preparation of Platinum Supported on Pregraphitized Carbon Blacks' Langmuir, 10, 750 (1994).   DOI   ScienceOn
23 W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, and Q. Xin, 'Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells', J. Phys. Chem. B, 107, 6292 (2003).   DOI   ScienceOn
24 M. L. Toebes, F. F. Prinsloo, J. H. Bitter, A. J. van Dillen, and K. P. de Jong, 'Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde', J. Catal., 214, 78 (2003).   DOI   ScienceOn
25 J. L. Figueiredo, M. F. R. Pereira M. M. A. Freitas, and J. J. M. Orfao, 'Modification of the surface chemistry of activated carbons', Carbon, 37, 1379 (1999).   DOI   ScienceOn
26 Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, and Y. Miyazaki, 'Dissolution of $Nafion^{(R)}$ membrane and recast $Nafion^{(R)}$ film in mixtures of methanol and water', J. Power Sources, 126, 41 (2004).   DOI   ScienceOn
27 C. H. Paik, T. D. Jarvi, and W. E. O'Grady, 'Extent of PEMFC Cathode Surface Oxidation by Oxygen and Water Measured by CV', Electrochem. Solid-State Lett., 7, A82 (2004).   DOI   ScienceOn
28 D. Lee and S. Hwang, 'Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs', International Journal of Hydrogen Energy, 33, 2790 (2008).   DOI   ScienceOn
29 M. S. Wilson, F. H. Garzon, K. E. Sickafus, and S. Gottesfeld, 'Surface area loss of supported platinum in polymer electrolyte fuel cells', J. Electrochem. Soc., 140, 2872 (1993).   DOI   ScienceOn
30 R. M. Darling and J. P. Meyers, 'Kinetic Model of Platinum Dissolution in PEMFCs', J. Electrochem. Soc., 150, A1523 (2003).   DOI   ScienceOn
31 E. Passalacqua, F. Lufrano, G. Squadrio, A. Patti, and L. Giorgi, 'Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance', Electrochim. Acta, 46, 799 (2001).   DOI   ScienceOn
32 J. Sasikumar, J. W. Ihm, and H. Ryu, 'Dependence of optimum Nafion content in catalyst layer on platinum loading', J. Power Sources, 132, 11 (2004).   DOI   ScienceOn
33 E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua, 'Influence of Nafion loading in the catalyst layer of gasdiffusion electrodes for PEFC', J. Power Sources, 77, 136 (1999).   DOI   ScienceOn
34 S. Gamburzev and A. Appleby, 'Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)', J. Power Sources, 107, 5 (2002).   DOI   ScienceOn
35 Z. Qi and A. Kaufman, 'Low Pt loading high performance cathodes for PEM fuel cells', J. Power Sources, 113, 37 (2003).   DOI   ScienceOn
36 E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, and L. Giorgi, 'Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance', Electrochim. Acta, 46, 799 (2001).   DOI   ScienceOn
37 J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, ZS. Liu, and S. Holdcroft, 'High temperature PEM fuel cells', J. Power Sources, 160, 872 (2006).   DOI   ScienceOn
38 Y. Oono, A. Sounai, and Michio Hori, 'Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells', J. Power Sources, 189, 943 (2009).   DOI   ScienceOn