Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.3.172

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide  

Lee, Jong-Moon (Division of Energy System Research, Ajou University)
Kim, Joo-Seong (Division of Energy System Research, Ajou University)
Hong, Soon-Kie (Division of Energy System Research, Ajou University)
Lee, Jeong-Jin (Division of Energy System Research, Ajou University)
Ahn, Han-Cheol (Division of Energy System Research, Ajou University)
Cho, Won-Il (Energy Storage Research Center, Korea Institute of Science and Technology)
Mho, Sun-Il (Division of Energy System Research, Ajou University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.3, 2012 , pp. 172-180 More about this Journal
Abstract
The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.
Keywords
Li-ion battery; Cathode; Nano-crystal; Precursors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Y. Ouyang, S. Q. Shi, and M. S. Lei, 'Jahn-Teller distortion and electronic structure of Li$Mn_{2}O_{4}$' J. Alloys Compd., 474, 370 (2009).   DOI
2 Y. Xia and M. Yoshio, 'An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds' J. Electrochem. Soc., 143, 3, 825 (1996).   DOI
3 J. Reed and G. Ceder, 'Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation' Chem. Rev., 104, 10, 4513 (2004).   DOI
4 W. Yang, G. Zhang, J. Xie, L. Yang, and Q. Liu, 'A combustion method to prepare spinel phase Li$Mn_{2}O_{4}$ cathode materials for lithium-ion batteries' J. Power Sources, 81, 412 (1999).   DOI
5 T. Takada, H. Hayakawa, H. Enoki, E. Akiba, H. Slegr, I. Davidson, and J, Murray, 'Structure and electrochemical characterization of $Li_{1+x}Mn_{2-x}O_{4}$ spinels for rechargeable lithium batteries' J. Power Sources, 81, 505 (1999).   DOI
6 H. W. Chan, J. G. Duh, and S. R. Sheen, 'Li$Mn_{2}O_{4}$ cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries' J. Power Sources, 115, 110 (2003).   DOI
7 F. F. C. Bazito and R. M. Torresi, 'Cathodes for lithium ion batteries: the benefits of using nanostructured materials' J. Braz. Chem. Soc., 17, 4, 627 (2006).   DOI
8 L. -F. Wang, C. -C. Ou, K. A. Striebel, and J.-S. Chen, 'Study of Mn dissolution from Li$Mn_{2}O_{4}$ spinel electrodes using rotating ring-disk collection experiments' J. Electrochem. Soc., 150, 7, A905 (2003).   DOI
9 J. B. Goodenough, 'Rechargeable batteries: challenges old and new' J. Solid State Electrochem., 16, 2019 (2012).   DOI
10 J. W. Fergus, 'Recent developments in cathode materials for lithium ion batteries' J. Power Sources, 195, 939 (2010).   DOI
11 Y. -J. Yang, E. -H. Liu, L. M. Li, Z. -Z. Huang, H. -J. Shen, and X. -X. Xiang, 'Nanostructured amorphous $MnO_{2}$ prepared by reaction of $KMnO_{4}$ with triethanolamine' J. Alloys Compd., 505, 2, 555 (2010).   DOI
12 D. H. Jang and S. M. Oh, 'Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V vs Li/ $Li_{x}Mn_{2}O_{4}$ rechargeable cells' J. Electrochem. Soc., 144, 10, 3342 (1997).   DOI   ScienceOn
13 X. Zhang, Z. Xing, L. Wang, Y. Zhu, Q. Li, J. Liang, Y. Yu, T. Huang, K. Tang, Y. Qian, and X. Shen, 'Synthesis MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries' J. Mater. Chem., in press, (2012).
14 E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, 'Synthesis of single crystalline spinel Li$Mn_{2}O_{4}$ nanowires for a lithium ion battery with high power density' Nano Lett., 9, 3, 1045 (2009)   DOI
15 Y. Li, H. Tan, X. Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, and B.L. Su, 'Well shaped $Mn_{3}O_{4}$ nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties' Small, 7, 4, 475 (2011).   DOI
16 S. C. Pang, S. F. Chin, and C. Y. Ling, 'Controlled synthesis of manganese dioxide nanostructures via a facile hydrothermal route' J. Nanomater., 2012, 1 (2012).
17 X. Wang and Y. Li, 'Selected-control hydrothermal synthesis of alpha and beta $MnO_{2}$ single crystal nanowires' J. Am. Chem. Soc., 124, 12, 2880 (2002).   DOI
18 B. Tang, G. Wang, L. Zhuo, and J. Ge, 'Novel dandelionlike beta-manganese dioxide microstructures and their magnetic properties' Nanotechnology, 17, 4, 947 (2006).   DOI
19 J. Park, J. H. Seo, G. Plett, W. Lu, and A. M. Sastry, 'Numerical simulation of the effect of the dissolution of Li$Mn_{2}O_{4}$ particles on Li-ion battery performance' Electrochem. Solid- State Lett., 14, 2, A14 (2011).   DOI
20 S. Komaba, N. Kumagai, and Y. Kataoka, 'Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithiumion batteries' Electrochem. Acta, 47, 1229 (2002)   DOI
21 M. Hirayama, H. Ido, K. S. Kim, and W. S. Cho, 'Dynamic structural changes at Li$Mn_{2}O_{4}$/Electrolyte interface during lithium battery reaction' J. Am. Chem. Soc., 132, 43, 15268 (2010).   DOI
22 J. McBreen, 'The application of synchrotron techniques to the study of lithium-ion batteries' J. Solid State Electrochem., 13, 7, 1051 (2008).
23 K. T. Lee and J. Cho, 'Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries' Nano Today, 6, 1, 28 (2011).   DOI   ScienceOn
24 R. Vacassy, H. Hofmann, N. Papageorgiou, and M. Gratzel, 'Influence of the particle size of electrode materials on intercalation rate and capacity of new electrodes' J. Power Sources, 81, 621 (1999).   DOI
25 H. -W. Lee, P. Muralidharan, and D. -K. Kim, 'Synthesis of one-dimensional spinel Li$Mn_{2}O_{4}$ nanostructures as a positive electrode in lithium ion battery' J. Korean Ceramic Soc., 48, 5, 379 (2011).   DOI
26 Y. Yang, C. Xie, R. Ruffo, H. Peng, D.K. Kim, and Y. Cui, 'Single nanorod devices for battery diagnostics: a case study on Li$Mn_{2}O_{4}$.' Nano Lett., 9, 12, 4109 (2009).   DOI
27 H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, and D. K. Kim, 'Ultrathin spinel Li$Mn_{2}O_{4}$ nanowires as high power cathode materials for Li-ion batteries' Nano Lett., 10, 10, 3852 (2010).   DOI
28 A. Yamada and M. Tanaka, 'Jahn-Teller structural phase transition around 280 K in Li$Mn_{2}O_{4}$' Mater. Res. Bull., 30, 6, 715 (1995).   DOI   ScienceOn