Browse > Article
http://dx.doi.org/10.5229/JECST.2012.15.2.90

TiO2@carbon Core-Shell Nanostructure Electrodes for Improved Electrochemical Properties in Alkaline Solution  

Kim, Do-Young (Department of Chemical Engineering, Soongsil University)
Lee, Young-Woo (Department of Chemical Engineering, Soongsil University)
Han, Sang-Beom (Department of Chemical Engineering, Soongsil University)
Ko, A-Ra (Department of Chemical Engineering, Soongsil University)
Kim, Hyun-Su (Department of Chemical Engineering, Soongsil University)
Kim, Si-Jin (Department of Chemical Engineering, Soongsil University)
Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
Park, Kyung-Won (Department of Chemical Engineering, Soongsil University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.2, 2012 , pp. 90-94 More about this Journal
Abstract
We report nanostructure electrodes with $TiO_2$ as a core and carbon as a shell ($TiO_2$@C) for oxygen reduction in alkaline solution. The structure of core-shell electrodes is characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction method, and X-ray photoelectron microscopy. The electrochemical properties of the $TiO_2$@C electrodes are characterized using a potentiostat and compared with those of carbon supported Pt catalyst. In particular, the core-shell electrode with dominant pyridinic-N component exhibits an imporved electrocatalytic activity for oxygen reduction reaction in alkaline solution.
Keywords
Nanostructure materials; Core/shell; N-doping; Oxygen reduction reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Li , B. N. Popov, T. Kawahara, and H. Yanagi, J. Power Sources, 196, 1717 (2011).   DOI
2 P. H. Matter, L. Zhang, and U. S. Ozkan, J. Catal., 239, 83 (2006).   DOI   ScienceOn
3 K. A. Kurak and A. B. Anderson, J. Phys. Chem. C, 113, 6730 (2009).
4 L. Xiong, and A. Manthiram, Electrochim. Acta, 49, 4163 (2004).   DOI
5 Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Chem. Commun., 46, 3369 (2010).   DOI
6 K.P. Gong, F. Du, Z.H. Xia, M. Durstock, and L.M. Dai, Science, 323, 760 (2009).   DOI   ScienceOn
7 Y. Tang, B.L. Allen, and D.R. Kauffman, A. Star, J. Am. Chem. Soc., 131, 13200 (2009).   DOI
8 T. Iwazaki, R. Obinata, W. Sugimoto, and Y. Takasu, Electrochem. Commun., 11, 376 (2009).   DOI
9 R.A. Sidik and A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, J. Phys. Chem. B, 110, 1787 (2006).   DOI
10 T. C. Nagaiah, S. Kundu, M. Bron, M. Muhler, and W. Schuhmann, Electrochem. Commun., 12, 338 (2010).   DOI
11 M. Lefèvre and J. P. Dodelet, Electrochim. Acta, 48, 2749 (2003).   DOI
12 S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Nature, 412, 169 (2001).   DOI   ScienceOn
13 S. Shanmugam and T. Osaka, Chem. Commun., 47, 4463 (2011).   DOI
14 Z. Chen, D. Higgins, and Z. Chen, Electrochim. Acta, 55, 4799 (2010).   DOI
15 G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng, and P. Bertrand, Electrochim. Acta, 42, 1379 (1997).   DOI
16 V. V. Strelko, V. S. Kuts, and P. A. Thrower, Carbon, 38, 1499 (2000).   DOI
17 R. Wang, J. Jia, H. Li, X. Li, H. Wang, Y. Chang, J. Kang, and Z. Lei, Electrochim. Acta, 56, 4526 (2011).   DOI
18 S. V. Dommele, K. P. Jong, and J.H. Bitter, Chem. Commun., 48, 4859 (2006).
19 A. Zamudio, A. L. Elyas, J. A. Rodriguez-Manzo, F. Lopez-Urias, G. Rodriguez-Gattorno, F. Lupo, M. Ruhle, D. J. Smith, H. Terrones, D. Diaz, and M. Terrones, Small, 3, 346 (2006).
20 H. Li, H. Liu, Z. Jong, W. Qu, D. Geng, X. Sun, and H. Wang, Int. J. Hydrog. Energy, 36, 2258 (2011).   DOI