Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.2.83

Structure Dependent Electrocatalysis for Electroreduction of Oxygen at Nanoporous Gold Surfaces  

Choi, Su-Hee (Department of Chemistry, Chungbuk National University)
Choi, Kyoung-Min (Department of Chemistry, Chungbuk National University)
Kim, Jong-Won (Department of Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.2, 2012 , pp. 83-89 More about this Journal
Abstract
We investigate the electrocatalytic activities for oxygen reduction at nanoporous gold (NPG) surfaces fabricated by selective dissolution of Ag from electrodeposited Ag-Au layers on electrode surfaces. The structure of NPG was controlled by changing the concentration ratios of precursor metal complexes during the electrodeposition of Ag-Au layers and the corresponding surface morphology and surface area was examined. NPG structures with Ag/Au ratio of 2.0 exhibited the highest electrocatalytic activity for oxygen reduction, where the nanoporous structure plays a key role, but the surface area does not affect on the electrocatalytic activity. The mechanism of electroreduction of oxygen was investigated by rotating disk electrode techniques. In acidic media, oxygen was first reduced to hydrogen peroxide followed by further reduction to water through 2-step 4-electron mechanism, whereas the oxygen was reduced directly to water by 4-electron mechanism in basic media.
Keywords
Nanoporous gold; Electrocatalysis; Oxygen reduction; Rotating disk electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher, 'Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold', J. Catal., 253, 132 (2008).   DOI
2 C. X. Ji and P. C. Searson, 'Synthesis and characterization of nanoporous gold nanowires', J. Phys. Chem., B, 107, 4494 (2003).   DOI
3 S. Trasatti and O. A. Petrii, 'Real surface-area measurements in electrochemistry', Pure Appl. Chem., 63, 711 (1991).   DOI
4 M. S. El-Deab and T. Ohsaka, 'An extraordinary electrocatalytic reduction of oxygen on gold nanoparticleselectrodeposited gold electrodes', Electrochem. Commun., 4, 288 (2002).   DOI
5 M. Hyun, S. Choi, Y. W. Lee, S. H. Kwon, S. W. Han, and J. Kim, 'Simple Electrodeposition of Dendritic Au Rods from Sulfite-Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities', Electroanalysis, 23, 2030 (2011).   DOI
6 A. J. Bard and L. R. Faulkner, Electrochemical Methods, 2nd ed., John Wiley & Sons, New York (2001).
7 P. R. Birkin, J. M. Elliott, and Y. E. Watson, 'Electrochemical reduction of oxygen on mesoporous platinum microelectrodes', Chem. Commun., 1693 (2000).
8 S. Tominaka, C.-W. Wu, T. Momma, K. Kurodab, and T. Osaka, 'Perpendicular mesoporous Pt thin films: electrodeposition from titania nanopillars and their electrochemical properties', Chem. Commun., 2888 (2008).
9 J.-H. Han, E. Lee, S. Park, R. Chang, and T. D. Chung, 'Effect of Nanoporous Structure on Enhanced Electrochemical Reaction', J. Phys. Chem., C114, 9546 (2010).
10 J. H. Bae, J.-H. Han, and T. D. Chung, 'Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis', Phys. Chem. Chem. Phys., 14, 448 (2012).   DOI   ScienceOn
11 M. R. Tarasevich, A. Sadkowski, and E. Yeager, "Oxygen Electrochemistry" in Comprehensive Treatise of Electrochemistry, 301, Plenum, New York (1983).
12 Y. Ding and J. Erlebacher, 'Nanoporous metals with controlled multimodal pore size distribution', J. Am. Chem. Soc., 125, 7772 (2003).   DOI
13 J. Kim and A. A. Gewirth, 'Mechanism of oxygen electroreduction on gold surfaces in basic media', J. Phys. Chem., B110, 2565 (2006).
14 R. R. Adzic, N. M. Markovic, and V. B. Vesovic, 'Structural effects in electrocatalysis - oxygen reduction on the Au(100) single-crystal electrode', J. Electroanal. Chem., 165, 105 (1984).   DOI
15 S. Strbac, N. A. Anastasijevic, and R. R. Adzic, 'Oxygen reduction on Au(100) and vicinal Au(910) and Au(11,1,1) faces in alkaline-solution - A rotating-disk ring study', J. Electroanal. Chem., 323, 179 (1992).   DOI
16 A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, and M. Baumer, 'Nanoporous Gold Catalysts for Selective Gas- Phase Oxidative Coupling of Methanol at Low Temperature' Science, 327, 319 (2010).   DOI
17 Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, and Y. Ding, 'Electrochemical sensor for detection of pnitrophenol based on nanoporous gold', Electrochem. Commun., 11, 1365 (2009).   DOI
18 B. Seo and J. Kim, 'Electrooxidation of Glucose at Nanoporous Gold Surfaces: Structure Dependent Electrocatalysis and Its Application to Amperometric Detection', Electroanalysis, 22, 939 (2010).   DOI