Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.1.027

Electrochemical Characteristics of Li3V2(PO4)3 Negative Electrode as a Function of Crystallinity  

Ku, Jun-Whan (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Park, Kyung-Jin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Oh, Seung-Mo (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.1, 2012 , pp. 27-34 More about this Journal
Abstract
$Li_3V_2(PO_4)_3$/carbon composite materials are synthesized from a sucrose-containing precursor. Amorphous $Li_3V_2(PO_4)_3/C$ (a-LVP/C) and crystalline $Li_3V_2(PO_4)_3/C$ (c-LVP/C) are obtained by calcining at $600^{\circ}C$ and $800^{\circ}C$, respectrively, and electrochemical performance as the negative electrode for lithium secondary batteries is compared for two samples. The a-LVP electrode shows much larger reversible capacity than c-LVP, which is ascribed to the spatial $Li^+$ channels and flexible structure of amorphous material. In addition, this electrode shows an excellent rate capability, which can be accounted for by the facilitated $Li^+$ diffusion through the defect sites. The sloping voltage profile is another advantageous feature for easy SOC (state of charge) estimation.
Keywords
Lithiun ion batteries; $Li_3V_2(PO_4)_3$; Anode; Amorphous; $Li^+$ diffusion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. E. Swider-Lyons, C. T. Love, and D. R. Rolison, 'Improved lithium capacity of defective $V_2O_5 $materials' Solid State Ionics, 152-153, 99 (2002).   DOI
2 C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, 'New cathode materials for rechargeable batteries: The 3-D framework structures $Li_{3}Fe_{2}(XO_{4})_{3}$ (X = P,As)' J. Solid State Chem. 135, 228 (1998).   DOI   ScienceOn
3 A. Tang, X. Wang, and S. Yang, 'A novel method to synthesize $Li_3V_2(PO_4)_3/C$ composite and its electrochemical Li intercalation performances' Mater. Lett., 62, 1646 (2008).   DOI   ScienceOn
4 M. M. Ren, Z. Zhou, X.P . Gao, W. X. Peng, and J. P. Wei, 'Core-shell LiV(PO)@C composites as cathode materials for lithium-ion batteries' J. Phys. Chem. C, 112, 5689 (2008).   DOI   ScienceOn
5 C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, and J. Sun, 'Hydrothermal synthesis of carbon-coated lithium vanadium phosphate' Electrochim. Acta, 54, 623 (2008).   DOI   ScienceOn
6 W. Xing, J. S. Xue, and J. R. Dahn, 'Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries' J. Electrochem. Soc., 143, 3.46 (1996).
7 A. V. Chadwick, S. L. P. Savin, S. Fiddy, r. Alcantara, D. F. Lisbona, P. Lavela, G. F. Ortiz, and J. L. Tirado, 'Formation and oxidation of nanosized metal particles by electrochemical reaction of Li and Na with $NiCo_2O_4$: Xray absorption spectroscopic study' J. Phys. Chem. C, 111, 4636 (2007).   DOI   ScienceOn
8 H. Fang, M. Liu, D. Wang, T. Sun, D. Guan, F. Li, J. Zhou, T. Sham, and H. Cheng, 'Comparison of the rate capability of nanostructured amorphous and anatase $TiO_{2}$ for lithium insertion using anodic $TiO_{2}$ nanotube arrays', Nanotechnology, 20, 225701 (2009).   DOI   ScienceOn
9 B. Y. Liaw, I. D. Raistrick, and R. A. Huggins, 'Thermodynamic and structural consideration in lithium vanadium bronze structures' Solid State Ionics, 45, 323 (1991).   DOI   ScienceOn
10 T. Ohzuku, T. Kodama, and T. Hirai, 'Electrochemistry of anatase titanium-dioxide in lithium nonaqueous cells' J. Power Sources, 14, 153 (1985).   DOI   ScienceOn
11 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, 'Nano-sized transition metaloxides as negativeelectrode materials for lithium-ion batteries' Nature, 407, 496 (2000).   DOI   ScienceOn
12 H. Li, P. Balaya, and J. Maier, 'Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides' J. Electrochem. Soc., 151, A1878 (2003).   DOI
13 J. H. Ku, Y. S. Jung, K. T. Lee, C. H. Kim, and S. M. Oh, 'Thermoelectrochemically activated $MoO_2$ powder electrode for lithium secondary batteries' J. Electrochem. Soc., 156, A688 (2009).   DOI   ScienceOn
14 Darent, B. deB.National Standard Reference Data Series: National Bureau of Standards No. 31 (Washington, 1970).
15 I. Mochida, C. Ku, S. Yoon, and Y. Korai, 'Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries' J. Power Sources, 75, 214 (1998).   DOI   ScienceOn
16 C. H. Park, S. Yoon, S. I. Lee, and S. M. Oh, '$Li^+$ storage sites in non-graphitizable carbons prepared from methylnaphthalene-derived isotropic pitches' Carbon, 38, 995 (2000).   DOI   ScienceOn
17 I. Mochida, C. Ku, and Y. Korai, 'Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches' Carbon, 39, 399 (2001).   DOI   ScienceOn
18 G. T. K. Fey, D. C. Lee, Y. Y. Lin, and T.P . Kumar, 'High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials' Synthetic Metals, 139, 71 (2003).   DOI   ScienceOn