1 |
S. Park, J. H. Ryu, and S. M. Oh, 'Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode' J. Electrochem. Soc., 158, A498 (2011).
DOI
ScienceOn
|
2 |
T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, and Z. Ogumi, 'Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries' J. Electrochem. Soc., 152, A2151 (2005).
DOI
ScienceOn
|
3 |
T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, 'Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte' J. Electrochem. Soc., 151, A1120 (2004).
DOI
ScienceOn
|
4 |
Y.-C. Lu, A. N. Mansour, N. Yabuuchi, and Y. Shao-Horn, 'Probing the Origin of Enhanced Stability of "" Nanoparticle Coated during Cycling to High Voltages: Combined XRD and XPS Studies' Chem. Mat., 21, 4408 (2009).
DOI
ScienceOn
|
5 |
L. El Clualtania, R. Dedryvere, J. B. Ledeuil, C. Siret, P. Biensan, J. Desbrieres, and D. Gonbeau, 'Surface film formation on a carbonaceous electrode: Influence of the binder chemistry' J. Power Sources, 189, 72 (2009).
DOI
ScienceOn
|
6 |
L. Chen, K. Wang, X. Xie, and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007).
DOI
ScienceOn
|
7 |
R. Dedryvere, L. Gireaud, S. Grugeon, S. Laruelle, J. M. Tarascon, and D. Gonbeau, 'Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study' J. Phys. Chem. B, 109, 15868 (2005).
DOI
ScienceOn
|
8 |
S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006).
DOI
ScienceOn
|
9 |
H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, 'Analysis of vinylene carbonate derived SEI layers on graphite anode' J. Electrochem. Soc., 151, A1659 (2004).
DOI
ScienceOn
|
10 |
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002).
DOI
ScienceOn
|
11 |
S. S. Zhang, K. Xu, and T. R. Jow, 'Low temperature performance of graphite electrode in Li-ion cells' Electrochim. Acta, 48, 241 (2002).
DOI
ScienceOn
|
12 |
B. V. Ratnakumar, M. C. Smart, and S. Surampudi, 'Effects of SEI on the kinetics of lithium intercalation' J. Power Sources, 97-98, 137 (2001).
|
13 |
C. Wang, A. J. Appleby, and F. E. Little, 'Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement' J. Electrochem. Soc., 149, A754 (2002).
DOI
ScienceOn
|
14 |
J. H. Ryu, E. Y. Oh, and S. M. Oh, 'Charge/discharge capacity of natural graphite anode according to the charge/discharge rate in lithium secondary batteries' J. Korean Electrochem. Soc., 7, 32 (2004).
과학기술학회마을
DOI
|
15 |
K. C. Moller, H. J. Santner, W. Kern, S. Yamaguchi, J. O. Besenhard, and M. Winter, 'In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives' J. Power Sources, 119-121, 561 (2003).
DOI
|
16 |
O. Matsuoka, A. Hiwara, T. Omi, M. Toriida, T. Hayashi, C. Tanaka, Y. Saito, T. Ishida, H. Tan, S. S. Ono, and S. Yamamoto, 'Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell' J. Power Sources, 108, 128 (2002).
DOI
ScienceOn
|
17 |
S. K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, 'Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions' Langmuir, 17, 8281 (2001).
DOI
ScienceOn
|
18 |
Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, 'Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film' Langmuir, 25, 12766 (2009).
DOI
ScienceOn
|
19 |
K. Xu, '"Charge-Transfer" Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes' J. Electrochem. Soc., 154, A162 (2007).
DOI
ScienceOn
|
20 |
E. J. Plichta, M. Hendrickson, R. Thompson, G. Au, W. K. Behl, M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Development of low temperature Li-ion electrolytes for NASA and DoD applications' J. Power Sources, 94, 160 (2001).
DOI
ScienceOn
|
21 |
H. p. Lin, D. Chua, M. Salomon, H. C. Shiao, M. Hendrickson, E. Plichta, and S. Slane, 'Low-Temperature Behavior of Li-Ion Cells' Electrochem. Solid-state Lett., 4, A71 (2001).
DOI
ScienceOn
|
22 |
E. J. Plichta and W. K. Behl, 'A low-temperature electrolyte for lithium and lithium-ion batteries' J. Power Sources, 88, 192 (2000).
DOI
ScienceOn
|
23 |
C. K. Huang, J. S. Sakamoto, J. Wolfenstine, and S. Surampudi, 'The Limits of Low-Temperature Performance of Li-Ion Cells' J. Electrochem. Soc., 147, 2893 (2000).
DOI
ScienceOn
|
24 |
M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates' J. Electrochem. Soc., 146, 486 (1999).
DOI
ScienceOn
|