Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.1.019

The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode  

Park, Sang-Jin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Ryu, Ji-Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Oh, Seung-Mo (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.1, 2012 , pp. 19-26 More about this Journal
Abstract
SEI (solid electrolyte interphase) layers are generated on a graphite negative electrode from three different electrolytes and low-temperature ($-30^{\circ}C$) charge/discharge performance of the graphite electrode is examined. The electrolytes are prepared by adding 2 wt% of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) into a standard electrolyte solution. The charge-discharge capacity of graphite electrode shows the following decreasing order; FEC-added one>standard>VC-added one. The polarization during a constant-current charging shows the reverse order. These observations illustrate that the SEI film resistance and charge transfer resistance differ according to the used additives. This feature has been confirmed by analyzing the chemical composition and thickness of three SEI layers. The SEI layer generated from the standard electrolyte is composed of polymeric carbon-oxygen species and the decomposition products ($Li_xPF_yO_z$) of lithium salt. The VC-derived surface film shows the largest resistance value even if the salt decomposition is not severe due to the presence of dense film comprising C-O species. The FEC-derived SEI layer shows the lowest resistance value as the C-O species are less populated and salt decomposition is not serious. In short, the FEC-added electrolyte generates the SEI layer of the smallest resistance to give the best low-temperature performance for the graphite negative electrode.
Keywords
Lithium-ion batteries; Natural graphite; Additive; Low-temperature performance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Park, J. H. Ryu, and S. M. Oh, 'Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode' J. Electrochem. Soc., 158, A498 (2011).   DOI   ScienceOn
2 T. Abe, F. Sagane, M. Ohtsuka, Y. Iriyama, and Z. Ogumi, 'Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries' J. Electrochem. Soc., 152, A2151 (2005).   DOI   ScienceOn
3 T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, 'Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte' J. Electrochem. Soc., 151, A1120 (2004).   DOI   ScienceOn
4 Y.-C. Lu, A. N. Mansour, N. Yabuuchi, and Y. Shao-Horn, 'Probing the Origin of Enhanced Stability of "$AlPO_4$" Nanoparticle Coated $LiCoO_2$ during Cycling to High Voltages: Combined XRD and XPS Studies' Chem. Mat., 21, 4408 (2009).   DOI   ScienceOn
5 L. El Clualtania, R. Dedryvere, J. B. Ledeuil, C. Siret, P. Biensan, J. Desbrieres, and D. Gonbeau, 'Surface film formation on a carbonaceous electrode: Influence of the binder chemistry' J. Power Sources, 189, 72 (2009).   DOI   ScienceOn
6 L. Chen, K. Wang, X. Xie, and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007).   DOI   ScienceOn
7 R. Dedryvere, L. Gireaud, S. Grugeon, S. Laruelle, J. M. Tarascon, and D. Gonbeau, 'Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study' J. Phys. Chem. B, 109, 15868 (2005).   DOI   ScienceOn
8 S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006).   DOI   ScienceOn
9 H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, 'Analysis of vinylene carbonate derived SEI layers on graphite anode' J. Electrochem. Soc., 151, A1659 (2004).   DOI   ScienceOn
10 D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002).   DOI   ScienceOn
11 S. S. Zhang, K. Xu, and T. R. Jow, 'Low temperature performance of graphite electrode in Li-ion cells' Electrochim. Acta, 48, 241 (2002).   DOI   ScienceOn
12 B. V. Ratnakumar, M. C. Smart, and S. Surampudi, 'Effects of SEI on the kinetics of lithium intercalation' J. Power Sources, 97-98, 137 (2001).
13 C. Wang, A. J. Appleby, and F. E. Little, 'Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement' J. Electrochem. Soc., 149, A754 (2002).   DOI   ScienceOn
14 J. H. Ryu, E. Y. Oh, and S. M. Oh, 'Charge/discharge capacity of natural graphite anode according to the charge/discharge rate in lithium secondary batteries' J. Korean Electrochem. Soc., 7, 32 (2004).   과학기술학회마을   DOI
15 K. C. Moller, H. J. Santner, W. Kern, S. Yamaguchi, J. O. Besenhard, and M. Winter, 'In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives' J. Power Sources, 119-121, 561 (2003).   DOI
16 O. Matsuoka, A. Hiwara, T. Omi, M. Toriida, T. Hayashi, C. Tanaka, Y. Saito, T. Ishida, H. Tan, S. S. Ono, and S. Yamamoto, 'Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell' J. Power Sources, 108, 128 (2002).   DOI   ScienceOn
17 S. K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, 'Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions' Langmuir, 17, 8281 (2001).   DOI   ScienceOn
18 Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, 'Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film' Langmuir, 25, 12766 (2009).   DOI   ScienceOn
19 K. Xu, '"Charge-Transfer" Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes' J. Electrochem. Soc., 154, A162 (2007).   DOI   ScienceOn
20 E. J. Plichta, M. Hendrickson, R. Thompson, G. Au, W. K. Behl, M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Development of low temperature Li-ion electrolytes for NASA and DoD applications' J. Power Sources, 94, 160 (2001).   DOI   ScienceOn
21 H. p. Lin, D. Chua, M. Salomon, H. C. Shiao, M. Hendrickson, E. Plichta, and S. Slane, 'Low-Temperature Behavior of Li-Ion Cells' Electrochem. Solid-state Lett., 4, A71 (2001).   DOI   ScienceOn
22 E. J. Plichta and W. K. Behl, 'A low-temperature electrolyte for lithium and lithium-ion batteries' J. Power Sources, 88, 192 (2000).   DOI   ScienceOn
23 C. K. Huang, J. S. Sakamoto, J. Wolfenstine, and S. Surampudi, 'The Limits of Low-Temperature Performance of Li-Ion Cells' J. Electrochem. Soc., 147, 2893 (2000).   DOI   ScienceOn
24 M. C. Smart, B. V. Ratnakumar, and S. Surampudi, 'Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates' J. Electrochem. Soc., 146, 486 (1999).   DOI   ScienceOn