Browse > Article
http://dx.doi.org/10.5229/JKES.2012.15.1.001

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries  

Suh, Soon-Sung (Department of Chemistry, Korea University)
Yi, Cheol-Woo (Department of Chemistry and Institute of Basic Science, Sungshin Women's University)
Kim, Keon (Department of Chemistry, Korea University)
Publication Information
Journal of the Korean Electrochemical Society / v.15, no.1, 2012 , pp. 1-11 More about this Journal
Abstract
Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.
Keywords
Solid electrolyte; Li-ion battery; All-solid battery; Safety; LISICON; NASICON;
Citations & Related Records
연도 인용수 순위
  • Reference
1 http://www.aist.go.jp/aist_j/press_release/pr2010/pr20101105/pr20101105.html.
2 http://www.ohara-inc.co.jp/en/product/electronics/licgc.html.
3 NIKKEI ELECTRONICS 2010.5.17.
4 J. L. Narvaez-Semanate and A.C.M. Rodrigues, 'Microstructure and ionic conductivity of $Li_{1+x}Al_{x}Ti_{2-x}(PO_{4})_{3}$' Solid State Ionics, 181, 1197 (2010).   DOI   ScienceOn
5 H. Aono and E. Sugimoto, 'Electrical property and sinterability of $LiTi_{2}(PO_{4})_{3}$ mixed with lithium salt ($Li_{3}PO_{4}$ or $Li_{3}BO_{3}$)' Solid State Ionics, 47, 257 (1991).   DOI
6 K. Arbi, S. Mandal, J. M. Rojo, and J. Sanz, 'Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors $Li_{1+x}Ti_{2-x}Al_{x}(PO_{4})_{3},\;0{\leq}x{\leq}0.7$. A Parallel NMR and Electric Impedance Study' Chem. Mater., 14, (2002).
7 R. Kanno and M. Murayama, J. Electrochem. Soc., 148, 742 (2001).   DOI   ScienceOn
8 Z. Liu, Fuqiang Huang, J. Yang, Baofeng Wang, and J. Sun, 'New lithium ion conductor, thio-LISICON lithium zirconium sulfide system' Solid State Ionics, 179, (2008).
9 M. Murayama, N. Sonoyama, A. Yamada, and R. Kanno, 'Material design of new lithium ionic conductor, thioLISICON in the $Li_{2}S-P_{2}S_{5}$ system' Solid State Ionics, 170, 173 (2004).   DOI
10 M. Murayama, R. Kanno, Y. Kawamoto, and T. Kamiyama, 'Structure of the thio-LISICON, $Li_{4}GeS_{4}$' Solid State Ionics, 154, 789 (2002).   DOI
11 Y. Shibutani, F. Mizuno, A. Hayashi, and M. Tatsumisago, Chemistry for Sustainable Development, 15, 219 (2007).
12 H. Hyooma and K. Hayahi, Mater. Res. Bull., 23, 1399 (1988).   DOI   ScienceOn
13 V. Thangadurai and W. Weppner, '$Li_{6}ALa_{2}Ta_{2}O_{12}$ (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction' Adv, Funct. Mater., 15, 107 (2005).   DOI   ScienceOn
14 S. Stramare, V. Thangadurai, and W. Weppner, 'Lithium Lanthanum Titanates: A Review' Chem. Mater., 15, 3974 (2003).   DOI   ScienceOn
15 Y. Inaguma, C. Liquan, M. Itoh, and T. Nakamura, 'High Ionic Conductivity in Lithium Lanthanum Titanate' Solid State Commun., 86, 689 (1993).   DOI   ScienceOn
16 J. H. Kennedy, S. Sahami, S. W. Shea, and Z. Zhang, 'Preparation and conductivity measurements of $SiS_{2}-Li_{2}S$ glasses doped with LiBr and LiCl' Solid State Ionics, 18, 368 (1986).   DOI
17 K. Takadaa, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, and R. Kanno, 'Solid-state lithium battery with graphite anode' Solid State Ionics, 158, 269 (2003).   DOI   ScienceOn
18 A, Overton, 'Inorganic Chemistry Fourth Edition' p 729 (2006).
19 M. L. F. Nascimento and N. O. Dantas, 'Anderson-Stuart model of ionic conductors in $Na_{2}O-SiO_{2}$ glasses' Ciencia & Engenharia, 12, 7 (2003).
20 K. H. Cho, 'Fabrication $Li_{2}O-B_{2}O_{3}-P_{2}O_{5}$ Solid Electrolyte by Aerosol Flame Deposition for ThinFilm Battery' Ph.D. Dissertation, Hanyang University, Seoul, Korea (2008).
21 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama1, R. Kanno, M .Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, 'A lithium superionic conductor' Nat. Mater., 10, 682 (2011).   DOI   ScienceOn
22 S. Stramare, V. Thangadurai, and W. Weppner, 'Lithium Lanthanum Titanates: A review' Chem. Mater., 15, 3974 (2003).   DOI   ScienceOn
23 V. Thangadurai, H. Kaack, and W. J.F. Weppner, 'Novel fast lithium ion conduction in Garnet-type $Li_{5}La_{3}M_{2}O_{12}$ (M = Nb, Ta), J. Am. Ceram. Soc., 86, 437 (2003).   DOI   ScienceOn
24 K. Arbi, A. Kuhn, J. Sanz, and F. Garcia-Alvarado, 'Characterization of Lithium Insertion NASICON-Type $Li_{1-x}Ti_{2-x}Al_{x}(PO_{4})_{3}$ and Its Electrochemical Behavior' J. Electrochem. Soc., 157, 654 (2010).   DOI   ScienceOn
25 R. Komiya, A. Hayashi, H. Morimoto, and M. Tatsumisago, 'Solid state lithium secondary batteries using an amorphous solid electrolyte in the system' Solid State Ionics, 140, 84 (2001).
26 G. X. Wang, D. H. Bradhurst, S. X. Dou, and H. K. Liu, '$LiTi_{2}(PO_{4})_{3}$ with NASICON-type structure as lithiumstorage materials' J. Power Sources, 124, 231 (2003).   DOI   ScienceOn
27 W, Tahil, 'The Zinc Air Battery and the Zinc Economy: A Virtuous Circle' Meridian International Research, (2007).
28 G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, and W. Wilcke, 'Lithium-Air Battery: Promise and Challenges' J. Phys. Chem. Lett., 1, 2193 (2010).   DOI   ScienceOn
29 A. D. Pasquier, I. Plitz, S. Menocal, and G. Amatucci, 'A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications' J. Power Sources, 115, 171 (2003).   DOI   ScienceOn
30 X. Zhuo-bing, M. Ming-you, W. Xian-ming, H. Ze-qiang and C. Shang, 'Thin-film lithium-ion battery derived from $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_{4})_{3}$ sintered pellet' Trans. Nonferrous Met. Soc. China, 16, 281 (2006).   DOI   ScienceOn
31 K. Kurashima and T. Tamakoshi, 'Recent sodium sulfur battery applications in Japan' TOKYO ELECTRIC POWER COMPANY.
32 J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C.D. Evans, 'Thin-film lithium and lithium-ion batteries' Solid State Ionics, 135, 33 (2000).   DOI
33 B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, X. Yu and R. A. Zuhr, 'Thin-film rechargeable lithium batteries' J. Power Sources,54, 58 (1995).   DOI   ScienceOn
34 R. A. Huggins, 'Lithium alloy negative electrodes' J. Power Sources, 81, 13 (1999).   DOI
35 J. O. Besenhard, J. Ynag, and M. Winter, 'Will advanced lithium-alloy anodes have a chance in lithium-ion batteries' J. Power Sources, 68, 87 (1997).   DOI   ScienceOn
36 A. Karthikeyan, P vinatier, and A. Levasseur, 'Study of lithium glassy solid electrolyte/electrode interface by impedance analysis' Bull. Mater. Sci., 23, 179 (2000).   DOI   ScienceOn
37 P. Knauth, 'Inorganic solid Li ion conductors: An overview' Solid State Ionics, 180, 911 (2009).   DOI   ScienceOn
38 J. W. Fergus, 'Ceramic and polymeric solid electrolytes for lithium-ion batteries' J. Power Sources, 16, (2010).
39 K. Mizumoto and S. Hayashi, 'Lithium ion conduction in A-site deficient perovskites' Solid State Ionics, 116, 263. (1999).   DOI
40 M. Nakayama, T. Usui, Y. Uchimoto, M. Wakihara, and M. Yamanoto, Changes in Electronic Structure upon Lithium Insertion into the A-Site Deficient Perovskite Type Oxides $(Li,La)TiO_{3}$' J. Phys. Chem. B, 109, 4135 (2005).   DOI   ScienceOn
41 US 특허 5314765.
42 US 특허 5512147.
43 US 특허 5338625.
44 US 특허 5567210.
45 US 특허 5597660.
46 US 특허 5612152.
47 N. J. Dudney and B. J. Neudecker, 'Solid state thin-film lithium battery systems' Curr. Opin. Solid St. M., 4, 479 (1999).   DOI   ScienceOn