Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.4.208

Synthesis and Electrochemical Properties of Solid Polymer Electrolytes Using BF3LiMA as Monomer  

Kim, Kyung-Chan (Department of Engineering Chemistry, Chungbuk National University)
Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.4, 2011 , pp. 208-213 More about this Journal
Abstract
Solid polymer electrolytes using $BF_3LiMA$ as monomer were synthesized by usual one step radical polymerization in THF solvent. The effect of $BF_3LiMA$ concentration on ionic conductivity and electrochemical stability was investigated by AC impedance measurement and linear sweep voltammetry. As a result, the highest ionic conductivity reached $7.71{\times}10^{-6}S\;cm^{-1}$ at $25^{\circ}C$ was obtained in 12.9 wt% of $BF_3LiMA$ content. Further increase or decrease of $BF_3LiMA$ content result to decrease the ionic conductivity due to the brittle matrix properties in former case and the insufficient number of charge carrier in the latter case. Furthermore, since the counter-anion was immobilized in the self-doped solid polymer electrolytes, high electrochemical stability up to 6.0 V was observed even in $60^{\circ}C$.
Keywords
Ionic conductivity; Lithium-ion secondary battery; Solubility; Self-doping; Solid polymer electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W.-C. Kang, H.-G. Park, K.-C. Kim, and S.-W. Ryu, 'Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes' Electrochimica Acta, 54, 4540 (2009).   DOI
2 J. MacCallum and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).
3 G.-A. Nazri, and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
4 M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
5 S. Zhang, L. Yang, and Q. Liu, 'Single-ion conductivity and carrier generation of polyelectrolytes' Solid State Ionics, 76, 121 (1995).   DOI
6 M. Watanabe, H. Tokuda, and S. Muto, 'Anionic effect on ion transport properties in network polyether electrolytes' Electrochimica Acta, 46, 1487 (2001).   DOI
7 Y. Kato, S. Yokoyama, T. Yabe, H. Ikuta, Y. Uchimoto, and M. Wakihara, 'Ionic conductivity and transport number of lithium ion in polymer electrolytes containing PEGborate ester' Electrochimica Acta, 50, 281 (2004).   DOI
8 J. Cowie and G. Spence, 'Novel single ion, comb-branched polymer electrolytes' Solid State Ionics, 123, 233 (1999).   DOI
9 X. Sun and C. Angell, 'New single ion conductors ("polyBOP" and analogs) for rechargeable lithium batteries' Solid State Ionics, 175, 743 (2004).   DOI
10 H. Allcock, D. Welna, and A. Maher, 'Single ion conductors-polyphosphazenes with sulfonimide functional groups' Solid State Ionics, 177, 741 (2006).   DOI
11 N. Byrne, D. MacFarlane, and M. Forsyth, 'Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators' Electrochimica Acta, 50, 3917 (2005).   DOI
12 F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjanczyk, and W. Bzducha, 'Impedance and polarisation studies of new lithium polyelectrolytes gels' J. Power Sources, 81-82, 766 (1999).   DOI
13 H. Xie, J. Guan, and J. Guo, 'Synthesis and properties of ionic conducting crosslinked polymer and copolymer based on dimethacryloyl poly(ethylene glycol)' European Polymer Journal, 37, 1997 (2001).   DOI
14 T. Czerniawski, 'The inhibited polymerization of lithium methacrylate and copolymerization with acrylonitrile' European Polymer Journal, 36, 635 (2000).   DOI
15 Y. Lee and J. Park, 'Electrochemical characteristics of polymer electrolytes based on P(VdF-co-HFP)/PMMA ionomer blend for PLIB' J. Power Sources, 97-98, 616 (2001).   DOI
16 J. Sun, D. R. MacFarlane, and M. Forsyth, 'Lithium polyelectrolyte-ionic liquid systems' Solid State Ionics, 147, 333 (2002).   DOI
17 X. Sun, J. Hou, and J. Kerr, 'Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate' Electrochimica Acta, 50, 1139 (2005).   DOI
18 D. Sadoway, B. Hyang, P. Trapa, P. Soo, P. Bannerjee, and A. Mayes, 'Self-doped block copolymer electrolytes for solid-state rechargeable lithium batteries' J. Power Sources, 97-98, 621 (2001).   DOI
19 J. Travas-Sejdic, R. Steiner, J. Desilvestro, and P. Pickering, 'Ionic conductivity of novel polyelectrolyte gels for secondary lithium-ion polymer batteries' Electrochimica Acta, 46, 1461 (2001).   DOI
20 P. H. Park, Y.-K. Sun, and D.-W. Kim, 'Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries' Electrochimica Acta, 50, 375 (2004).   DOI
21 Z. Florjanczyk, W. Bzducha, N. Langwald, J. R. Dygas, F. Krok, and B. Misztal-Faraj, 'Lithium gel polyelectrolytes based on crosslinked maleic anhydride-styrene copolymer' Electrochimica Acta, 44, 3563 (2000).
22 P. P. Prosini and B. Banow, 'Composite polyether electrolytes with a poly(styrenesulfonate) lithium salt and lewis acid type additive' Electrochimica Acta, 48, 1899 (2003).   DOI
23 S.-W. Ryu, P. Trapa, S. Olugebefola, J. Gonzalez-Leon, D. Sadoway, and A. Mayes, 'Effect of counter ion placement on condutcitity in single-ion conducting block copolymer electrolytes' J. Electrochem. Soc., 152(1), A158 (2005).   DOI