Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.3.176

Electrochemical Investigation in Particle Size and Thermal Cycles of Sr Doped Layered Perovskite Based Composite Cathodes for Intermediate Temperature-operating Solid Oxide Fuel Cell  

Kim, Jung-Hyun (Department of Applied Materials Engineering, Hanbat National University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.3, 2011 , pp. 176-183 More about this Journal
Abstract
The electrochemical characteristics from various particle sizes of $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91) in composite cathode comprised of the samarium-strontium doped layered perovskite ($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$) and CGO91 have been investigated for possible application as a cathode material for an intermediate temperature-operating solid oxide fuel cell (IT-SOFC). The area specific resistances (ASRs) of composite cathodes with CGO91 having smaller particle size ($0.4\sim42{\mu}m$) and SBSCO of 1 : 1 ratio (50wt% SBSCO and 50 wt% CGO91, SBSCO: 50) give the lowest ASR of $0.10{\mu}cm^2$ at $600^{\circ}C$ and $0.013{\Omega}cm^2$ at $700^{\circ}C$. However, composite cathodes with having relatively bigger CGO91 particle size show the two times higher ASR results than those of SBSCO : 50. From the 10 times thermal cycles in SBSCO : 50, the ASRs of SBSCO : 50 increased from $0.0193{\Omega}cm^2$ to $0.094{\Omega}cm^2$ at $700^{\circ}C$, however, the ASR value was maintained after 7 times of thermal cycling.
Keywords
Solid oxide fuel cell (SOFC); Area specific resistance (ASR); Layered perovskite; Cathode; Composite cathode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Yang, W. Yue, X. Bo, X. Yi, and Q. Yitai, 'Moderate temperature synthesis of nanocrystalline $Co_3O_4$ via gel hydrothermal oxidation' Mater. Chem. Phys., 74, 234 (2002).   DOI
2 O. Yammamoto, Y. Takeda, R. Kanno, and M. Noda, 'Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells' Solid State Ion., 22, 241 (1987).   DOI
3 N. Q. Minh, 'Ceramic fuel cell' J. Am. Ceram. Soc., 76, 563 (1993).   DOI
4 H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, 'Chemical thermodynamic considerations in sintering of $LaCrO_3$-based perovskites' J. Electrochem. Soc., 138, 2719 (1991).   DOI
5 R. D. Shannon, 'Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides' Acta Crystallogr., Sect. A. A32,751 (1976).
6 M. G. Chourashiya, S. R. Bhardwaj, and L. D. Jadhav, 'Fabrication of 10%Gd-doped ceria (GDC)/NiO-GDC half cell for low or intermediate temperature solid oxide fuel cells using spray pyrolysis' J. Solid State Chem., 14, 1869 (2010).
7 S. H. Choi, C. S. Hwang, H.-W. Lee, and J. Kim, 'Fabrication of $Gd_2O_3-Doped\;CeO_2$ thin films for singlechamber- type solid oxide fuel cells and their characterization' J. Electrochem. Soc., 156, B381 (2009).   DOI
8 E. Perry Murray, M. J. Sever, and S. A. Barnett, 'Electrochemical performance of $(La,Sr)(Co,Fe)O_3-(Ce,Gd)O_3$ composite cathodes' Solid State Ion., 148, 27 (2002).   DOI   ScienceOn
9 A. K. Azad, J. H. Kim, and J. T. S. Irvine, 'Structureproperty relationship in layered perovskite cathode $LnBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ (Ln = Pr, Nd) for solid oxide fuel cells' J. Power Sources, 196, 7333 (2011).   DOI
10 J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. M. Bae 'Advanced electrochemical properties of $LnBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ (Ln = Pr, Sm, and Gd) as Cathode Materials for ITSOFC' J. Electrochem. Soc., 156, B682 (2009).   DOI
11 J. H. Kim, M. Cassidy, J. T.S. Irvine, and J.M. Bae 'Electrochemical investigation of composite cathodes with $SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$ cathodes for intermediate temperature-operating solid oxide fuel cell' Chem. Mater., 22, 883 (2010).   DOI   ScienceOn
12 A. A. Taskin, A. N. Lavrov, and A. Yoichi, 'Fast oxygen diffusion in A-site ordered perovskites' Prog. Solid State Chem., 35, 481 (2007).   DOI
13 C. Aimin, J. S. Stephen, and A. K John, 'Electrical properties of $GdBaCo_2O_{5+x}$ for IT SOFC applications' Solid State Ion., 177, 2009 (2006).   DOI
14 T. Albert, J. S. Stephen, J. C. Richard, F. Hernández- Ramírez, and A.K. John 'Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells' J. Mater. Chem., 17, 3175 (2007).
15 T. Vogt, P. M. Woodward, P. Karen,B. A. Hunter, P. Henning, and A. R. Moodenbaugh, 'Low to high spinstate transition induced by charge ordering in antiferromagnetic $YBaCo_2O_5$' Phys. ReV. Lett., 84, 2969 (2000).   DOI
16 E. Suard, F. Fauth, V. Caignaert, I. Mirebeau, and G. Baldinozzi, 'Charge ordering in the layered Co-based perovskite $HoBaCo_2O_5$' Phys. ReV. B, 61, R11871 (2000).   DOI
17 A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, 'Structural and magnetic studies of ordered oxygen-deficient perovskites $LnBaCo_2O_{5+}{\delta}$, closely Related to the "112" Structure' J. Solid State Chem., 142, 247 (1999).
18 F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, 'Spin-state ordered clusters in the perovskite $NdBaCo_2O_{5.47}$' Phys. Rev. B. 66,184421(1) (2002).
19 H. Wu, 'Spin state and phase competition in $TbBaCo_2O_{5.5}$ and the lanthanide series $LBaCo_2O_{5+{\delta}}$ (0 < -$\delta$<-1)' Phys. Rev. B. 64, 092413(1) (2001).
20 A. E. Lutz, R. S. Larson, and J. O. Keller, 'Thermodynamic comparison of fuel cells to the Carnot cycle' Int. J. Hydrogen Energy, 27, 1103 (2002).   DOI
21 R. O'Hayre, S. W. Cha, W. Colella, and Fritz B. Prinz, 'Fuel Cell Fundamentals' Wiley, New York, USA (2006).
22 G. Hoogers, 'Fuel cell technology' CRC, USA, (2003).
23 S. C. Singhal and K. Kendall, 'High Temperature Solid Oxide Fuel Cells : Fundamentals, Design and Applications' Elsevier, Oxford, UK (2003).
24 B. C. H. Steele and A. Heinzel, 'Materials for fuel-cell technologies' Nature, 414, 345 (2001).   DOI
25 W. Chen, T. Wen, H. Nie, and R. Zheng, 'Study of $Ln_{0.6}Sr_{0.4}Co_{0.8}Mn_{0.2}O_3$(Ln = La, Gd, Sm, or Nd) as the cathode materials for intermediate temperature SOFC' Mater. Res. Bull., 38, 1319 (2003).   DOI
26 S. Hashimoto, K. Kammer, P. Larsen, F. Poulsen, and M. Mogensen, 'A Study of $Pr_{0.7}Sr_{0.3}Fe_{1-x}Ni_xO_{3-{\delta}}$ as a cathode material for SOFCs with intermediate operating tem-perature' Solid State Ion., 176, 1013 (2005).   DOI
27 B. C. H. Steele and J. M. Bae, 'Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-x}$ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes' Solid State Ion., 106, 255 (1998).   DOI
28 Z. Shao and S. M. Haile, 'A high performance cathode for the next generation solid-oxide fuel cells' Nature, 431, 170 (2004).
29 F. M. Figueiredo, J. A. Labrincha, J. R. Frade, and F. M. B. Marques, 'Reactions between a zirconia-based electrolyte and $LaCoO_3$-based electrode materials' Solid State Ion., 101-103, 343 (1997).   DOI
30 G. Ch. Kostogloudis, and Ch. Ftikos 'Chemical compatibility of $RE_{1-x}Sr_xMnO_{3{\pm}{\delta}}$ (RE = La, Pr, Nd, Gd, 0 ${\leq}$ x ${\leq}$ 0.5) with yttria stabilized zirconia solid electrolyte' J. Eur. Ceram. Soc., 18, 1707 (1998).   DOI
31 J. H. Kim, J. Bae, M. Cassidy, P. A Connor, W. Zhou, and J. T. S. Irvine, '$SmBaCo_2O_{5+d}$ and $LnBa_{0.5}Sr_{0.5}Co_2O_{5+d}$ potential cathode materials for IT-SOFC' ECS Transactions, 25(2), 2707 (2009)
32 F. Tietz, 'Thermal expansion of SOFC materials' Ionics, 5, 129 (1999).   DOI
33 B. C. H. Steele? 'Survey of materials selection for ceramic fuel cells II. Cathodes and anodes' Solid State Ion., 86-88, 1223 (1996).   DOI
34 C. Peters, A. Weber, and E. Ivers-Tiffee, 'Nanoscaled $(La_{0.5}Sr_{0.5})CoO{3{\delta}}$ thin film cathodes for SOFC application at 500${^{\circ}C}$ < T < 700${^{\circ}C}$' J. Electrochem. Soc., 155 (7), B730 (2008).   DOI