Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.3.157

Thermal Stability of Surface Film Formed on a Graphite Negative Electrode in Lithium Secondary Batteries  

Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
Lee, Ha-Na (Department of Chemical Engineering, Soonchunhyang University)
Kim, Yang-Soo (Suncheon Center, Korea Basic Science Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.3, 2011 , pp. 157-162 More about this Journal
Abstract
The stability at elevated temperatures of a surface film formed on a graphite electrode in lithium secondary batteries was investigated by transmission electron microscopy (TEM) and electrochemical AC impedance spectroscopy (EIS). TEM analysis revealed that the surface film partly dissolved in the electrolyte solution during storage at $60^{\circ}C$, resulting in a decrease in the thickness of the surface film and a change in its morphology to a porous structure. On the other hand, an increase in the impedance of the surface film which is attributable to a change in composition of the surface film was confirmed by EIS analysis during the storage at $60^{\circ}C$. It was also shown that the addition of vinylene carbonate or 1,3-propane sultone or etylene sulfite, even if limited, improves the stability of the surface film at elevated temperatures.
Keywords
Litihium secondary battery; Graphite negative electrode; Thermal stability; Surface film; TEM; EIS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, 'Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures' Langmuir, 20, 1348 (2004).   DOI
2 A. Funabiki, M. Inaba, and Z. Ogumi, 'AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite' J. Power Sources, 68, 227 (1997).   DOI
3 M. Itagaki, S. Yotsuda, N. Kobari, K. Watanabe, S. Kinoshita, and M. Ue, 'Electrochemical impedance of electrolyte/electrode interfaces of lithium-ion rechargeable batteries: Effects of additives to the electrolyte on negative electrode' Electrochim. Acta, 51, 1629 (2006).   DOI
4 G. H. Grodnigg, T. M. Grodnigg, J. O. Besenhard, and M. Winter, 'Propylene sulfite as film-forming electrolyte additive in lithium ion batteries' J. Power Sources, 97-98, 592 (2001).   DOI
5 M. Xu, W. Li, and B. L. Lucht, 'Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries' J. Power Sources, 193, 804 (2009).   DOI
6 B. T. Yu, W. H. Qiu, F. H. Li, and L. Cheng, 'A study on sulfites for lithium-ion battery electrolytes' J. Power Sources, 158, 1373 (2006).   DOI
7 E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, 'Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies' J. Power Sources, 97-98, 52 (2001).   DOI   ScienceOn
8 C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, 'Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries' J. Power Sources, 68, 277 (1997).   DOI   ScienceOn
9 E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, 'An advanced tool for the selection of electrolyte components for rechargeable lithium batteries' J. Electrochem. Soc., 145, 3482 (1998).   DOI
10 O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli 'Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems' J. Power Sources, 43-44, 47 (1993).
11 Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, 'The dependence of the performance of Li-C intercalation amodes for Li-ion secondary batteries on the electrolyte solution composition' Electrochim. Acta, 39, 2559 (1994).   DOI
12 D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, 'The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair type batteries' J. Electrochem. Soc., 141, 603 (1994).   DOI
13 D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, 'The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries' J. Electrochem. Soc., 142, 2882 (1995).   DOI
14 M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, 'In situ Raman study on electrochemical Li intercalation into graphite' J. Electrochem. Soc., 142, 20 (1995).   DOI
15 D. Bar-Tow, E. Peled, and L. Burstein, 'A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries' J. Electrochem. Soc., 146, 824 (1999).   DOI
16 M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, 'Surface film formation on graphite negative electrode at elevated temperatures' Electrochemistry, 71, 1132 (2003).
17 J. R. Dahn, 'Phase-diagram of $Li_xC_6$' Phys. Rev., B44, 9170 (1991).
18 T. Ohzuku, Y. Iwakoshi, and K. Sawai, 'Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell' J. Electrochem. Soc., 140, 2490 (1993).   DOI
19 Z. Jiang, M. Alamgir, and K. M. Abraham, 'The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells' J. Electrochem. Soc., 142, 333 (1995).   DOI
20 R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of $Li_xC_6$', J. Power Sources, 43-44, 39 (1993).
21 E. Peled, "Handbook of Battery Materials" 419, Wiley-VCH, Weinheim (1999).
22 E. Peled, 'The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model' J. Electrochem. Soc., 126, 2047 (1979).   DOI
23 Z. Ogumi, A. Sano, M. Inaba, and T. Abe, 'Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode' J. Power Sources, 97-98, 156 (2001).   DOI