Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.3.145

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure  

Park, Jeong-Min (Department of Chemical Engineering, Kwangwoon University)
Kim, Hwan-Dong (Department of Chemical Engineering, Kwangwoon University)
Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.3, 2011 , pp. 145-151 More about this Journal
Abstract
ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.
Keywords
ZnSe; Electrochemical deposition; Bandgap; Molecular dynamics; Band structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. D. Becke, 'Density functional calculations of molecular bond energies' J. Chem. Phys., 84, 4524 (1986).
2 J. P. Perdew and Y. Wang, 'Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation' Phys. Rev. B, 33, 8800 (1986).   DOI
3 D. C. Langreth and J. P. Perdew, 'Exchange-correlation energy of a metallic surface: Wave-vector analysis' Phys. Rev. B, 15, 2884 (1977).   DOI
4 Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su and C. C. Chen, 'Fabrication of 3D macroporous structure of II-VI and III-Vsemiconductors using electrochemical deposition' Langmuir, 18, 9942 (2002).   DOI
5 M. A. Haase, J. Qui, J. M. DePuydt and H. Cheng, 'Bluegreen laser diodes' J. Appl. Phys. Lett, 53, 1272 (1991).
6 H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, M. Kobayashi and R. L. Gunshor, 'ZnSe based multilayer pn junctions as efficient light emitting diodes for display applications' Appl. Phys. Lett., 60, 892 (1992).   DOI
7 A. D. Becke, 'Density-functional thermochemistry. III. The role of exact exchange' J. Chem. Phys., 98, 5648 (1993).   DOI
8 C. Kittel, "Introduction to solid state physics 8 ed." John Wiley & Sons, Inc., New York (2005).
9 R. W. G. Wyckoff, "Crystal Structures" Interscience, London (1987).
10 A. F. Wells, "Structural Inorganic Chemistry" Oxford University Press, New York (1987).
11 G. Dresselhaus, 'Spin-orbit coupling effects in zinc blende structures' Phys. Rev., 100, 580 (1955).
12 W. Kohn, L. J. Sham, 'Self-Consistent equations including exchange and correlation effects' Phys. Rev. A, 140, 1133 (1965).   DOI
13 K. H. Hellwege, O. Madelung and Landolt-Börnstein, "Numerical data and functional relationships in science and technology" Springer, New York (1982).
14 R. Asahi, W. Mannstadt and A. J. Freeman, 'Optical properties and electronic structures of semiconductors with screened-exchange LDA' Phys. Rev. B, 59, 7486 (1999).   DOI
15 J. P. Perdew, K. Burke and M. Ernzerhof, 'Generalized gradient approximation made simple' Phys. Rev. Lett., 77, 3865 (1996).   DOI
16 A. Kathalingam, T. Mahalingam and C. Sanjeeviraja, 'Optical and structural study of electrodeposited zinc selenide thin films' Mat. Chem. Phys., 106, 215 (2007).   DOI   ScienceOn
17 D. Vogle, P. Krüger and J. Pollmann, 'Ab initio electronicstructure calculations for II-VI semiconductors using selfinteraction- corrected pseudopotentials' Phys. Rev. B, 52, 316 (1995).   DOI
18 M. Afzaal and P. O'Brien, 'Recent developments in II-VI and III-VI semiconductors and their applications in solar cells' J. Mater. Chem., 16, 1597 (2006).   DOI
19 O. Oda, "Compound Semiconductor Bulk Materials and Characterizations" World Sci., Singapore (2007).
20 M. Davide, M. Carlo and M. Maurizio, 'A quantum chemistry investigation of the gas phase and surface chemistry of the MOCVD of ZnSe' J. Crystal Growth, 248, 31 (2003).   DOI
21 H. Dixit, R. Saniz, D. Lamoen and B. Partoens, 'The quasiparticle band structure of zincblende and rocksalt ZnO' J. Phys.: Condens. Matter., 22, 125505 (2010).   DOI
22 C. J. Brierley, C. M. Beck, G. R. Kennedy and D. Wheatley, 'The potential of CVD diamond as a replacement to ZnSe in $CO_2$ Laser optics' Diamond and Related Materials, 8, 1759 (1999).   DOI
23 T. Yamauchi, Y. Takahara, M. Naitoh and N. Narita, 'Growth mechanism of ZnSe single crystal by chemical vapor transport method' Physica B, 376, 778 (2006).   DOI
24 Manzoli, M. C. Santos and S. A. S. Machado, 'A voltammetric and nanogravimetric study of ZnSe electrodeposition from an acid bath containing Zn and Se' Thin Solid Films, 515, 6860 (2007).   DOI
25 F. A. Kröger, 'Cathodic deposition and characterization of metallic or semiconducting binary alloys or compounds' J. Electrochem. Soc., 125, 12 (1978).
26 K. Remigiusz, Z. Piotr and F. Krzysztof, 'Electrodeposition of ZnSe' Electrochim. Acta, 53, 21 (2008).
27 S. Sanchez, C. Lucas, G. S. Picard, M. R. Bermejo and Y. Castrillejo, 'Molten salt route for ZnSe high-temperature electrosynthesis' Thin Solid Films, 361-362, 107 (2000).   DOI
28 H. Chermette, 'Density functional theory: A powerful tool for theoretical studies in coordination chemistry' Coord. Chem. Rev., 699, 178 (1998).
29 P. A. Dirac, Proc. 'Note on exchange phenomena in the Thomas atom' Cambridge Philos. Soc., 26, 376 (1930).   DOI