Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.3.131

Electrochemical Quantitative Analysis of Mn(II) for the Study of Mn-Dissolution Behavior of LiMn2O4  

Son, Hwa-Young (Department of Applied Chemistry, Kumoh National Institute of Technology)
Lee, Min-Young (Rechargeable Battery Materials Division, Phoenix Materials Co., Ltd.)
Ko, Hyoung-Shin (Rechargeable Battery Materials Division, Phoenix Materials Co., Ltd.)
Lee, Ho-Chun (Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.3, 2011 , pp. 131-137 More about this Journal
Abstract
A simple and rapid electrochemical method for the quantitative analysis of $Mn^{2+}$ ion is demonstrated with a view to examine the $Mn^{2+}$ dissolution behavior of $LiMn_2O_4$. The method described herein is based on the oxidation reaction of $Mn^{2+}$ to $Mn^{4+}(MnO_2)$ in aqueous buffer solution. Under the optimum condition (pH 8.9 0.04 M $NH_3-NH_4Cl$ buffer solution and glassy carbon working electrode), the linear range of $5{\mu}M-100{\mu}M$ (0.275-5.5 ppm) [$Mn^{2+}$] is obtained for the Linear sweep voltammetry(LSV) and $0.2{\mu}M-10{\mu}M$ (0.011-0.55 ppm) [$Mn^{2+}$] for the differential pulse voltammetry (DPV), respectively. It is also noted that the oxidation reaction of $Mn^{2+}$ ion is reduced with increasing amount of the electrolyte ($LiPF_6$, EC, EMC) added to the measuring solution, which is found to be mainly due to $LiPF_6$ and EC rather than EMC.
Keywords
$LiMn_2O_4$; Manganese dissolution; Electrolyte; Differential pulse voltammetry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C.-H. Doh, J.-H. Lee, D.-J. Lee, B.-S Jin and S.-I. Moon, 'The quantitative analyses of the dissolved manganese in the electrolyte of $li/limn_2o_4$ cell using by ion chromatography' Bull. Kor. Chem. Soc., 30, 2429, (2009).   과학기술학회마을   DOI
2 M. Sano, T. Hattori, T. Hibino and M. Fujita, 'Improved $LiMn_2O_4$/Graphite Li-Ion cells at $55^{\circ}C$' Electrochem. Solid-State Lett., 10, A270, (2007).   DOI
3 K. Takahashi, M. Saitoh, N. Asakura, T. Hibino, M. Sano, M. Fujita and K. Kifune, 'Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries' J. Power Sources, 136, 115, (2004).   DOI
4 D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V Li/$Li,Mn_2O_4$ Cells' J. Electrochem. Soc., 143, 2204, (1996).   DOI
5 D. H. Jang and S. M. Oh, 'Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/$Li_xMn_2O_4$ rechargeable cells' J. Electrochem. Soc., 144, 3342, (1997).   DOI
6 H. Lee, J.-J. Cho, J. Kim and H.-J. Kim 'Comparison of voltammetric responses over the cathodic region in $LiPF_6$ and LiBETI with and without HF' J. Electrochem. Soc., 152, A1193, (2005).   DOI
7 J. Di and F. Zhang, 'Voltammetry determination of trace manganese with pretreatment glassy carbon electrode by linear sweep voltammetry' Talanta, 60, 31, (2003).   DOI
8 K. Tasaki, K. Kanda, S. Nakamura, and M. Ue, 'Decomposition of $LiPF_6$ and stability of PF5 in Li-ion battery electrolyte' J. Electrochem. Soc., 150, A1628, (2003).   DOI