Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.2.092

Properties of N-butyl-N-methyl-pyrrolidinium Bis(trifluoromethanesulfonyl) Imide Based Electrolytes as a Function of Lithium Bis(trifluoromethanesulfonyl) Imide Doping  

Kim, Jae-Kwang (Department of Applied Physics, Chalmers University of Technology)
Lim, Du-Hyun (Department of Chemical & Biological Engineering, Gyeongsang National University)
Scheers, Johan (Department of Applied Physics, Chalmers University of Technology)
Pitawala, Jagath (Department of Applied Physics, Chalmers University of Technology)
Wilken, Susanne (Department of Applied Physics, Chalmers University of Technology)
Johansson, Patrik (Department of Applied Physics, Chalmers University of Technology)
Ahn, Jou-Hyeon (Department of Chemical & Biological Engineering, Gyeongsang National University)
Matic, Aleksandar (Department of Applied Physics, Chalmers University of Technology)
Jacobsson, Per (Department of Applied Physics, Chalmers University of Technology)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.2, 2011 , pp. 92-97 More about this Journal
Abstract
In this study we have investigated the Li-ion coordination, thermal behavior and electrochemical stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ($Py_{14}TFSI$) with lithium bis(trifluoromethanesulfony)imide (LiTFSI) doping intended for use as electrolytes for lithium batteries. The ionic conductivity is reduced and glass transition temperature ($T_g$) increases with LiTFSI doping concentration. Also, the electrochemical stability increases with LiTFSI doping. A high LiTFSI doping could enhance the electrochemical stability of electrolytes for lithium batteries, whereas the decrease in the ionic conductivity limits the capacity of the battery.
Keywords
Ionic liquid electrolyte; LiTFSI doping; Li-ion coordination; Electrochemical stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Q. Zhou, W.A. Henderson, G.B. Appetecchi, and S. Passerini, 'Phase behavior and thermal properties of ternary ionic liquid-lithium salt (IL-IL-LiX) electrolytes' J. Phys. Chem. C, 114, 6201 (2010).   DOI
2 S. Randstrom, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, 'The influence of air and its components on the cathodic stability of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide' Electrochim. Acta, 53, 1837 (2007).   DOI
3 I. Rey, P. Johansson, J. Lindgren, J.-C. Lassegues, J. Grondin, and L. Servant, 'Spectroscopic and theoretical study of ($CF_3SO_2)_2N−$ (TFSI−) and $(CF_3SO_2)_2NH$ (HTFSI)' J. Phys. Chem. A, 102, 3249 (1998).   DOI
4 S. Duluard, J. Grondin, J.-L. Bruneel, I. Pianet, A. Grelard, G. Campet, M.-H. Delville and J.-C. Lassegues, 'Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids' J. Raman Spectrosc., 39, 627 (2008).   DOI
5 T. Fromling, M. Kunze, M. Schonhoff, J. Sundermeyer, and B. Roling, 'Enhanced lithium transference numbers in ionic liquid electrolytes' J. Phys. Chem. B, 112, 12985 (2008).   DOI
6 H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, and C.H. Chen, 'Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries' Electrochim. Acta, 55, 5204 (2010).   DOI
7 Z.P. Rosol, N.J. German and S.M. Gross, 'Solubility, ionc conductivity and viscosity of lithium salt in room temperature ionic liquids' Green Chem., 11, 1453 (2009).   DOI
8 A. Martinelli, A. Matic, P. Jacobsson, L. Borjesson, A. Fernicola, and B. Scrosati, 'Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide doped ionic liquids of the pyrrolidinium cation and bis (trifluoromethanesulfonyl)imide anion' J. Phys. Chem. B, 113, 11247 (2009).   DOI
9 K.-S. Kim, S. Choi, D. Demberelnyamba, H. Lee, J. Oh, B.-B. Lee, and S.-J. Mun, 'Ionic liquids based on N-alkyl-Nmethylmorpholinium salts as potential electrolytes' Chem. Commun., 828 (2004).
10 S. Seki, Y. Umebayashi, S. Tsuzuki, K. Hayamizu, Y. Kobayashi, Y. Ohno, T. Kobayashi, Y. Mita, H. Miyashiro, N. Terada, and S.I. Ishiguro, 'Phase transition and conductive acceleration of phosphonium-cation-based roomtemperature ionic liquid' Chem. Commun., 5541 (2008).
11 D. Gerhard, S.C. Alpaslan, H.J. Gores, M. Uerdingen, and P. Wasserscheid, 'Trialkylsulfonium dicyanamides - a new family of ionic liquids with very low viscosities' Chem. Commun., 5080 (2005).
12 E.-H. Cha, S.-A. Lim, D.-W. Kim, J.-K. Lee, and J.-H. Park, 'Physical properties of lithium co-polyelectrolyte based on imidazolium and ammonium-type ionic liquids' J. Korean Electrochemical Society, 13, 198 (2010).   과학기술학회마을   DOI
13 W.A. Henderson and S. Passerini, 'Phase behavior of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSIanions' Chem. Mater., 16, 2881 (2004).   DOI
14 J.-C. Lassègues, J. Grondin, C. Aupetit, and P. Johansson, 'Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids' J. Phys. Chem. A, 113, 305 (2009).   DOI
15 J.-K. Kim, A. Matic, J.-H. Ahn, and P. Jacobsson, 'An imidazolium based ionic liquid electrolyte for lithium batteries' J. Power Sources, 195, 7639 (2010).   DOI
16 A. Lewandowski, and A. Swiderska-Mocek, 'Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies' J. Power Sources, 194, 601 (2009).   DOI
17 M. Galinski, A. Lewandowski, and I. St pniak, 'Ionic liquids as electrolytes' Electrochim. Acta, 51, 5567 (2006).   DOI
18 S. Forsyth, J. Golding, D.R. MacFarlane, and M. Forsyth, 'N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes' Electrochim. Acta, 46, 1753 (2001).   DOI
19 M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati, 'Ionic-liquid materials for the electrochemical challenges of the future' Nat. Mater., 8, 621 (2009).   DOI
20 M. Holzapfel, C. Jost, and P. Novak, 'Stable cycling of graphite in an ionic liquid based electrolyte' Chem. Commun., 2098 (2004).
21 S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, S. Protti, S. Lazzaroni, M. Fagnoni, and A. Albini, 'A binary ionic liquid system composed of N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries' J. Power Sources, 194, 45 (2009).   DOI
22 J. Huang, and A.F. Hollenkamp, 'Thermal behavior of ionic liquids containing the FSI anion and $Li^+$ cation' J. Phys. Chem. C, 114, 21840 (2010).   DOI
23 H. Sakaebe, and H. Matsumoto, 'N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery' Electrochem. Commun., 5, 594 (2003).   DOI
24 A. Noda, K. Hayamizu, and M. Watanabe, 'Pulsed-gradient spinecho $^1H and ^{19}F$ NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids' J. Phys. Chem. B, 105, 4603 (2001).   DOI
25 K.J. Fraser, E.I. Izgorodina, M. Forsyth, J.L. Scott, and D.R. MacFarlane, 'Liquids intermediate between "molecular" and "ionic" liquids: Liquid Ion Pairs?' Chem. Commun., 3817 (2007).
26 P. Wasserscheid and W. Keim, 'Ionic Liquids-New "Solutions" for Transition Metal Catalysis' Angew. Chem. Int., 39, 3772 (2000).   DOI