Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.2.083

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells  

Yeon, Seung-Hyeon (Department of Chemical and Biomolecular Engineering, Yonsei University)
Patel, Rajkumar (Department of Chemical and Biomolecular Engineering, Yonsei University)
Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Ahn, Sung-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.2, 2011 , pp. 83-91 More about this Journal
Abstract
Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.
Keywords
Polymer electrolytes; Dye-sensitized solar cell; Graft copolymer; Titania ($TiO_2$); Sol-gel;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J. H. Koh, J. K. Koh, N. G. Park, and J. H. Kim, 'Azideinduced crosslinking of electrolytes and its application in quasi-solid-state dye-sensitized solar cells' Sol. Energy Mater. Sol. Cells, 94, 436 (2010).   DOI
2 D. H. Cho, Y. Y. Jung, M. H. Yun, S. Y. Kwon, and J. K. Koo, 'Effect of plasticizer on electrolyte membranes for dye sensitized solar cells' Membrane Journal, 20, 13 (2010).   과학기술학회마을
3 J.E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S.D. Ogier, K. Carr, M. Gratzel, and J.R. Durrant, 'Parameters Influencing Charge Separation in Quasi-solid-state Dye-Sensitized Solar Cells Using Novel Hole Conductors' Adv. Fucnt. Mater., 16, 1832 (2006).   DOI
4 M. Wang, X. Xiao, X. Zhou, X. Li, and Y. Lin, 'Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells' Sol. Energy Mater. Sol. Cells, 91, 785 (2007).   DOI
5 N. Yamanaka, R. Kawano,W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, and S. Yanagida, 'Dye-Sensitized $TiO_2$ Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes' J. Phys. Chem. B, 111, 4763 (2007).   DOI
6 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, 'A stable quasi-quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte' Nature Mater., 2, 402 (2003).   DOI
7 W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, 'Quasi-quasi-solid-state dye-sensitized $TiO_2$ solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine' J. Phys. Chem. B, 105, 12809 (2001).   DOI
8 G. D. Sharma, P. Suresh, M. S. Roy, and J. A. Mikroyannidis, 'Effect of surface modification of $TiO_2$ on the photovoltaic performance of the quasi solid state dye sensitized solar cells using a benzothiadiazole-based dye' J. Power Sources, 195, 3011 (2010).   DOI
9 J. A. Mikroyannidis, M. M. Stylianakis, M.S. Roy, P. Suresh, and G. D. Sharma, 'Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells' J. Power Sources, 194, 1171 (2009).   DOI
10 N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, 'A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries' Electrochem. Commun., 11, 481 (2009).   DOI
11 J. Lee, Y. Kim, and E. Kim, 'Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization' Membrane Journal, 20, 8 (2010)   과학기술학회마을
12 B. L. Langsdorf, J. Sultan, and P. G. Pickup, 'Partitioning and polymerization of pyrrole into perfluorosulfonate (Nafion) membranes under neutral conditions' J. Phys. Chem. B, 107, 8412 (2003).   DOI
13 E.-M. Jung, Y.-W. Rhee, D.-H. Peck, B.-R. Lee, S.-K. Kim, and D.-H. Jung, 'Reduction of methanol crossover in a direct methanol fuel cell by using the Pt-coated electrolyte membrane' J. Electrochem. Soc. 11, 1 (2008).   과학기술학회마을   DOI
14 J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, 'Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport' Macromolecules, 36, 6183 (2003).   DOI
15 P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, 'General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films' Chem. Mater., 14, 3284 (2002).   DOI
16 T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, 'Binary polyethylene oxide/titania quasi-solid-state redox electrolyte for highly efficient nanocrystalline $TiO_2$ photoelectrochemical cells' Nano Lett., 2, 1259 (2002).   DOI
17 J.-K. Lee and J.-J. Lee, 'Perspective of hybridization technology for next-generation solar cells' J. Electrochem. Soc. 13, 1 (2010).   과학기술학회마을   DOI
18 B. O'Reagan and M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films' Nature, 353, 737 (1991).   DOI
19 C. C. Weng and K. H. Wei, 'Selective distribution of surface-modified $TiO_2$ nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer' Chem. Mater., 15, 2936 (2003).   DOI
20 Z. Sun, D. H. Kim, M. Wolkenhauer, G. G. Bumbu, W. Knoll, and J. S. Gutmann 'Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films' Chem. Phys. Chem., 7, 370 (2006).   DOI   ScienceOn
21 P. Falaras, T. Stergiopoulos, and D. S. Tsoukleris, 'Enhanced efficiency in quasi-solid-state dye-sensitized solar cells based on fractal nanostructured $TiO_2$ thin films' Small, 4, 770 (2008).   DOI
22 M. Nedelcu, J. W. Lee, E. J. W. Crossland, S. C. Warren, M. C. Orilall, S. Guldin, S. Huttner, C. Ducati, D. Eder, U. Wiesner, U. Steiner, and H. J. Snaith, 'Block-copolymer directed synthesis of mesoporous $TiO_2$ for dye-sensitized solar cells' Soft Matter, 5, 134 (2009).   DOI   ScienceOn
23 Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, 'Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell' Coordination Chem. Rev., 248, 1381 (2004).   DOI
24 G. Schlichtho1rl, N. G. Park, and A. J. Frank, 'Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline $TiO_2$ solar cells' J. Phys. Chem. B, 103, 782 (1999).   DOI
25 D. K. Roh, J. T. Park, S. H.Ahn, D. Y. Ryu, and J. H. Kim, 'Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: Interactions, nanostructures and applications to dye-sensitized solar cells' Electrochem. Acta, 55, 4976 (2010).   DOI
26 S. H. Ahn, J. H. Koh, and J. A. S. J. H. Kim, 'Structure control of organized mesoporous $TiO_2$ films templated by graft copolymers for dye-sensitized solar cells' Chem. Commun., 46, 1935 (2010).   DOI
27 S. H. Ahn, H. Jeon, K. J. Son, H. Ahn, W. G. Koh, D. Y. Ryu, and J. H. Kim, 'Efficiency improvement of dyesensitized solar cells using graft copolymer-templated mesoporous $TiO_2$ films as an interfacial layer' J. Mater. Chem., 21, 1772 (2011).   DOI
28 J. T. Park, D. K. Roh, R. Patel, E. Kim, D. Y. Ryu, and J. H. Kim, 'Preparation of $TiO_2$ spheres with hierarchical pores via grafting polymerization and sol-gel process for dye-sensitized solar cells' J. Mater. Chem., 20, 8521 (2010).   DOI
29 K. J. Lee, J. T. Park, J. H. Goh, and J. H. Kim, 'Synthesis of amphiphilic graft copolymer brush and its use as template film for the preparation of silver nanoparticles' J. Polym. Sci. A: Polym. Chem., 46, 3911 (2008).   DOI
30 J. K. Koh, J. A. Seo, J. H. Koh, and J. H. Kim, 'Templated synthesis of Ag loaded $TiO_2$ nanostructures using amphiphilic polyelectrolyte' Mater. Lett., 63, 1360 (2009).   DOI
31 P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, 'Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework' Chem. Mater., 11, 2813 (1999).   DOI
32 G. Martinez, M. A. Gomez, R. Gomez, and J. L. Segura, 'Synthesis of a [60] fullerene-functionalized poly(vinyl chloride) derivative by stereospecific chemical modification of PVC' J. Polym. Sci. A: Polym. Chem., 45, 5408 (2007).   DOI
33 T. Kang, C. H. Shin, M.-J. Choi, J. K. Koo, and N. Cho, 'A study on the ionic conducting characteristics of electrolyte membranes containing KI and I2 for dye sensitized solar cell' Membrane Journal, 20, 21 (2010).   과학기술학회마을
34 Y. Kotani, T. Matoda, A. Matsuda, T. Kogure, M. Tatsumisago, and T. Minami, 'Anatase nanocrystaldispersed thin films via sol-gel process with hot water treatment: effects of poly(ethylene glycol) addition on photocatalytic activities of the films' J. Mater. Chem. 11, 2045 (2001).   DOI
35 H. C. Kim, X. Jia, C. M. Stafford, D. H. Kim, T. J. McCarthy, M. Tuominen, C. J. Hawker, and T. P. Russell, 'A route to nanoscopic $SiO_2$ posts via block copolymer templates' Adv. Mater., 13, 795 (2001).   DOI
36 A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, 'Bicontinuous cubic block copolymer photonic crystals' Adv. Mater., 14, 1850 (2002).   DOI
37 S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng, and K. S. Liang, 'Morphological transformation of PS-b-PEO diblock copolymer by selectively dispersed colloidal CdS quantum dots' Macromolecules, 36, 7903 (2003).   DOI
38 M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou, and Y. Lin, 'The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells' Electrochim. Acta, 52, 4858 (2007).   DOI
39 A. W. Fahmi, H. G. Braun, and M. Stamm, 'Fabrication of metallized nanowires from self-assembled diblock copolymer templates' Adv. Mater., 15, 1201 (2003).   DOI
40 C. Liang, K. Hong, G. A. Guiochon, J. W. Mays, and S. Dai, 'Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers' Angew. Chem. Int. Ed., 43, 5785 (2004)   DOI
41 J. N. Freitas, A. S. Gonçalves, M. A. Paoli, J. R. Durrant, and A. F. Nogueira, 'The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells' Electrochim. Acta, 53, 7166 (2008).   DOI
42 I. C. Flores, J. N. Freitas, C. Longo, M. A. Paoli, H. Winnischofer, and A. F. Nogueira, 'Dye-sensitized solar cells based on $TiO_2$ nanotubes and a quasi-solid-state electrolyte' J. Photochem. Photobio. A: Chem. 189, 153 (2007).   DOI
43 J. E. Benedetti, M. A. Paoli, and A. F. Nogueira, 'Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte' Chem. Commun., 9, 1121 (2008).
44 J. K. Koh, J. H. Koh, S. H. Ahn, J. H. Kim, and Y. S. Kang, 'Quasi-solid-state dye-sensitized solar cells employing one-pot synthesized supramolecular electrolytes with multiple hydrogen bonding' Electrochim. Acta, 55, 2567 (2010).   DOI