Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.2.061

CIGS Thin Film Solar Cells by Electrodeposition  

Saji, Viswanathan S. (Department of Advanced Materials Chemistry, Korea University)
Lee, Sang-Min (Department of Advanced Materials Chemistry, Korea University)
Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.2, 2011 , pp. 61-70 More about this Journal
Abstract
Thin film solar cells with chalcopyrite $CuInSe_2/Cu(In,Ga)Se_2$ absorber materials, commonly known as "CIS/CIGS solar cells" have recently attracted significant research interest as a potential alternative energy-harvesting system for the next generation. Among the different deposition techniques available for the CIGS absorber layer, electrodeposition is an effective and low cost alternative to vacuum based deposition methods. This article reviews progress in the area of CIGS solar cells with an emphasis on electrodeposited absorber layer. Existing challenges in fabrication of stoichiometric absorber layer are highlighted.
Keywords
Thin film solar cell; Chalcopyrite CIGS; Absorber layer; Electrodeposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. W. Schock and R. Noufi, 'CIGS-based solar cells for the next millennium' Prog. Photovolt. Res. Appl., 8, 151 (2000).   DOI
2 S. Al. Alagappan and S. Mitra, 'Optimizing the design of CIGS-based solar cells: a computational approach' Mater. Sci. Eng. B, 116, 293 (2005).   DOI
3 M. Kemell, M. Ritala and M. Leskelä, 'Thin film deposition methods for $CuInSe_2$ solar cells' Crit. Rev. Solid State Mater. Sci., 30, 1 (2005).   DOI
4 K. L. Chopra, P. D. Paulson and V. Dutta, 'Thin film solar cells: an overview' Prog. Photovolt. Res. Appl., 12, 69 (2004).   DOI
5 F. Kang, J. Ao, G. Sun, Q. He and Y. Sun, 'Properties of $CuInxGa_{1x}Se_2$ thin films grown from electrodeposited precursors with different levels of selenium content' Curr. Appl. Phys., 10, 886 (2010).   과학기술학회마을   DOI   ScienceOn
6 M. Engelmann, B. E. McCandless and R. W. Birkmire, 'Formation and analysis of graded $Cu(In(Se_{1-y}S_y)_2$' Thin Solid Films, 387, 14 (2001).   DOI
7 I. Dirnstorfer, W. Burkhardt, W. Kriegseis, I. Österreicher, H. Alves, D. M. Hofmann, O. Ka, A. Polity, B. K. Meyer and D. Braunger, 'Annealing studies on $CuIn(Ga)Se_2$: the influence of gallium' Thin Solid Films, 361-362, 400 (2000).   DOI
8 D. D. Shivagan, P. J. Dale, A. P. Samantilleke and L. M. Peter, 'Electrodeposition of chalcopyrite films from ionic liquid electrolytes' Thin Solid Films, 515, 5899 (2007).   DOI
9 Y. P. Fu, R. W. You and K. K. Lew, '$CuIn_{1x}Ga_xSe_2$ absorber layer fabricated by pulse-reverse electrodeposition technique for thin film solar cell' J. Electrochem. Soc., 156, D553 (2009).   DOI   ScienceOn
10 R. N. Bhattacharya, 'Electrodeposited two-layer Cu-In-Ga-Se/In-Se thin films' J. Electrochem. Soc., 157, D406 (2010).   DOI   ScienceOn
11 R. Inguanta, P. Livreri, S. Piazza and C. Sunseri, 'Fabrication and photoelectrochemical behavior of ordered CIGS nanowire arrays for application in solar cells' Electrochem. Solid-State Lett., 13, K22 (2010).   DOI
12 J. E. Jaffe and A. Zunger, 'Theory of band gap anomaly in $ABC_2$ chalcopyrite semiconductors' Phys. Rev. B., 29, 1882 (1984).   DOI
13 K. Yoon, J. Song, S. Kim, J. Yun, S. Ahn and J. Lee, 'Development of CIS-based compound thin film solar cells', KIER-A62419, Korea Institute of Energy Research, 2006.
14 S. R. Kodigala, 'Thin films and nanostructures- $Cu(In_{1-x}Ga_x)Se_2$ based thin film solar cells' Vol. 35, Academic Press, Elsevier, San Diego (2010).
15 P. J. Dale, A. P. Samantilleke, G. Zoppi, I. Forbes, S. Roncallo and L. M. Peter, 'Deposition and characterization of copper chalcopyrite based solar cells using electrochemical techniques' ECS Transactions, 6, 535 (2007).
16 R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, 'Thin-film $CuIn_{1-x}Ga_xSe_2 $ photovoltaic cells from solution-based precursor layers' Appl. Phys. Lett., 75, 1431 (1999).   DOI
17 D. Xia, J. Li, M. Xu and X. Zhao, 'Electrodeposited and selenized CIGS thin films for solar cells' J. Non Cryst. Solids, 354, 1447 (2008).   DOI
18 Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, 'Cyclic voltammetry study of electrodeposition of $Cu(In,Ga)Se_2$ thin films' Electrochim. Acta, 54, 3004 (2009).   DOI   ScienceOn
19 S. Aksu, J. Wang and B. M. Basol, 'Electrodeposition of In-Se and Ga-Se thin films for preparation of CIGS solar cells' Electrochem. Solid-State Lett., 12, D33 (2009).   DOI
20 T. Matsuoka, Y. Nagahori and S. Endo, 'Preparation and characterization of electrodeposited $CuGa_xIn_{1-x}Se_2 $ thin films' Jpn. J. Appl. Phys., 33, 6105 (1994).   DOI
21 A. M. Fer´nadeza and R. N. Bhattacharya, 'Electrodeposition of $CuIn_{1-x}Ga_xSe_2 $ precursor films: optimization of film composition and morphology' Thin Solid Films, 474, 10 (2005).   DOI   ScienceOn
22 R. N. Bhattacharya, W. Batchelor, K. Ramanathan, M. A. Contreras and T. Moriarty, 'The performance of $CuIn_{1-x}Ga_xSe_2 $-based photovoltaic cells prepared from low-cost precursor films' Sol. Energy Mater. Sol. Cells, 63, 367 (2000).   DOI
23 J. Kois, M. Ganchev, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A.N. Tiwari, 'Electrodeposition of Cu-In-Ga thin metal films for $Cu(In,Ga)Se_2$ based solar cells' Thin Solid Films, 516, 5948 (2008).   DOI
24 D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx- Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, 'Chalcopyrite thin film solar cells by electrodeposition' Solar Energy, 77, 725 (2004).   DOI
25 R. N. Bhattacharya and A. M. Fernandez, '$Culn_{1-x}Ga_xSe_2$- based photovoltaic cells from electrodeposited precursor films' Sol. Energy Mater. Sol. Cells, 76, 331 (2003).   DOI
26 R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason and R. N. Noufi, '12.3% efficient $Culn_{1-x}Ga_xSe_2$-based device from electrodeposited precursor' J. Electrochem. Soc., 144, 1376 (1997).   DOI
27 R. N. Bhattacharya, W. Batchetor, H. Wiesner, F. Hasoon, J. E. Granata, K. Ramanathan, J. Alieman, J. Keane, A. Mason, R. J. Matson and R. N. Noufi, '14.1% $Culn_{1-x}Ga_xSe_2$-based photovoltaic cells from electrodeposited precursors' J. Electrochem. Soc., 145, 3435 (1998).   DOI
28 R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufia and J. R. Sites, '15.4% $Culn_{10-x}Ga_xSe_2$-based photovoltaic cells from solution-based precursor films' Thin Solid Films, 361-362, 396 (2000).   DOI
29 N. Guimard, J. Bodereau, J. Kurdi, J. F. Guillemoles, D. Lincot, P. P. Grand, M. BenFarrah, S. Taunier, O. Kerrec and P. Mogensen, 'Efficeicnt CIGS solar cells prepared by electrodeposition', Proceedings of the 3rd world conference on photovoltaic energy convention, Osaka, Japan, May 11-18, (2003).
30 A. Kampmann, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyenm and K. Kalberlah, 'Electrodeposition of CIGS on metal substrates', Proceedings of the MRS 2003 Spring Meeting, San Francisco, USA.
31 M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A. Tiwari, 'Preparation of $Cu(In,Ga)Se_2$ layers by selenization of electrodeposited Cu-In-Ga precursors' Thin Solid Films, 511-512, 325 (2006).   DOI
32 S. Seyrling, S. Calnan, S. Bücheler, J. Hüpkes, S. Wenger, D. Brémaud, H. Zogg and A. N. Tiwari, '$Cu(In,Ga)Se_2$ photovoltaic devices for tandem solar cell application' Thin Solid Films, 517, 2411 (2009).   DOI
33 S. M. Lee, Y. H. Kim, M. K. Oh, S. I. Hong, H. J. Ko and C. W. Lee, 'Electrodeposition of $Cu(In_xGa_{(1x)})Se_2 $ thin film', J. Korea Electrochem. Soc., 13, 89 (2010).   DOI
34 O. Savadogo, 'Chemically and electrochemically deposited thin films for solar energy materials' Sol. Energy Mater. Sol. Cells, 52, 361 (1998).   DOI
35 R. W. Birkmire and E. Eser, 'Polycrystalline thin film solar cells: present status and future potential' Annu. Rev. Mater. Sci., 27, 625 (1997).   DOI
36 J. W. Dini, "Electrodeposition- The materials science of coatings and substrates", Noyes Publications, New York, USA (1992).
37 M. E. Calixto, K. D. Dobson, B. E. McCandless and R. W. Birkmire, 'Controlling growth chemistry and morphology of single bath electrodeposited $Cu(In,Ga)Se_2$ thin films for photovoltaic application' J. Electrochem. Soc., 153, G521 (2006).   DOI
38 J. Zank, M. Mehlin and H. P. Fritz, 'Electrochemical codeposition of indium and gallium for chalcopyrite solar cells' Thin Solid Films, 286, 259 (1996).   DOI
39 R. Friedfeld, R. P. Raffaelle and J. G. Mantovani, 'Electrodeposition of $CuIn_xGa_{1x}Se_2$ thin films' Sol. Energy Mater. Sol. Cells, 58, 375 (1999).   DOI
40 A. M. Hermann, M. Mansour, V. Badri, B. Pinkhasov, C. Gonzales, F. Fickett, M. E. Calixto, P. J. Sebastian, C. H. Marshall and T. J. Gillespie, 'Deposition of smooth $Cu(In,Ga)Se_2$ films from binary multilayers' Thin Solid Films, 361-362, 74 (2000).   DOI
41 M. Kaelin, D. Rudmann and A. N. Tiwari, 'Low cost processing of CIGS thin film solar cells' Solar Energy, 77, 749 (2004).   DOI
42 M. B. Ard, K. Granath and L. Stolt, 'Growth of $Cu(In,Ga)Se_2$ thin films by coevaporation using alkali precursors' Thin Solid Films, 361-362, 9 (2000).   DOI
43 N. B. Chaure, A. P. Samantilleke, R. P. Burton, J. Young and I. M. Dharmadasa, 'Electrodeposition of p+, p, i, n and n+ type copper indium gallium diselenide for development of multilayer thin film solar cells' Thin Solid Films, 472, 212 (2005).   DOI
44 S. Khelifi, A. Belghachi, J. Lauwaert, K. Decock, J. Wienke, R. Caballero, C. A. Kaufmann and M. Burgelman, 'Characterization of flexible thin film CIGS solar cells grown on different metallic foil substrates' Energy Procedia, 2, 109 (2010).   DOI
45 S. Niki, M. Contreras, I. Repins, M. Powall, K. Kushiya, S. Ishizuka and K. Matsubara, 'CIGS absorbers and processes', Prog. Photovolt: Res. Appl., 18, 453 (2010).   DOI
46 C. D. R. Ludwig, T. Gruhn, F. Claudia, S. Tanja, W. Johannes and K. Peter, 'Indium-gallium segregation in $CuIn_xGa_{1−x}Se_2$: an ab initio-based Monte Carlo study' Phys. Rev. Lett., 105, 025702/1-4 (2010).
47 S. H. Wei, S. B. Zhang and A. Zunger, 'The effects of Ga addition to $CuInSe_2$ on its electronic, structural, and defect properties' Appl. Phys. Lett., 72, 3199 (1998).   DOI
48 J. Werner, J. Mattheis and U. Rau, 'Efficiency limitations of polycrystalline thin film solar cells: case of $Cu(InGa)Se_2$' Thin Solid Films, 480, 399 (2005).   DOI
49 L. Gütay and G. Bauer, 'Spectrally resolved photoluminescence studies on $Cu(InGa)Se_2$ solar cells with lateral submicron resolution' Thin Solid Films, 515, 6212 (2007).   DOI
50 M. A. Arturo, 'A simple model of graded band-gap $CuInGaSe_2$ solar cells' Energy Procedia, 2, 169 (2010).   DOI
51 K. Kushiya, 'Progress in large-area Cu(InGa)Se2-based thin-film modules with the efficiency of over 13 %', Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, May 11-18, 2003.
52 T. Negami, M. Nishitani, N. Kohara, Y. Hashimoto and T. Wada, 'Real time composition monitoring methods in physical vapor deposition of $Cu(In,Ga)Se_2$ thin films' Mater. Res. Soc. Symp. Proc., 426, 267 (1996).   DOI
53 M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, 'Progress toward 20% efficiency in $Cu(In,Ga)Se_2$ polycrystalline thin-film solar cells' Prog. Photovolt: Res. Appl., 7, 311 (1999).
54 K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, 'Properties of 19.2% efficiency $ZnO/CdS/CuInGaSe_2$ thin-film solar cells' Prog. Photovolt: Res. Appl., 11, 225 (2003).   DOI
55 F. H. Karg, 'Development and manufacturing of CIS thin film solar modules' Sol. Energy Mater. Sol. Cells, 66, 645 (2001).   DOI
56 M. Turcu and U. Rau, 'Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system' Thin Solid Films, 431-432, 158 (2003).   DOI
57 W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi and D. Levi, Recombination kinetics and stability in polycrystalline $Cu(In,Ga)Se_2$ solar cells, Thin Solid Films, 517, 2360 (2009).   DOI
58 J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek and H. W. Schock, 'Stability issues of $Cu(In,Ga)Se_2$-based solar cells' J. Phys. Chem. B, 104, 4849 (2000).   DOI   ScienceOn
59 M. Grätzel, 'Photovoltaic and photoelectrochemical conversion of solar energy' Phil. Trans. R. Soc., 365, 993 (2007).   DOI
60 M. A. Green, 'The path to 25% silicon solar cell efficiency: history of silicon cell evolution' Prog. Photovolt. Res. Appl., 17, 183 (2009).   DOI
61 I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, '19.9%-efficient ZnO/ $CdS/CuInGaSe_2$ solar cell with 81.2% fill factor' Prog. Photovolt. Res. Appl., 16, 235 (2008).   DOI
62 S. Shirakata, K. Ohkubo, Y. Ishii and T. Nakada, 'Effects of CdS buffer layers on photoluminescence properties of $Cu(In,Ga)Se_2$ solar cells' Sol. Energy Mater. Sol. Cells, 93, 988 (2009).   DOI   ScienceOn
63 R. L. Stolk, H. Li, C. H. M. van der Werf and R. E. I. Schropp, 'Tandem and triple junction silicon thin film solar cells with intrinsic layers prepared by hot-wire CVD' Thin Solid Films, 501, 256 (2006).   DOI
64 M. A. Arturo, 'Can we improve the record efficiency of CdS/CdTe solar cells' Sol. Energy Mater. Sol. Cells, 90, 2213 (2006).   DOI
65 J. J. Loferski, 'Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion' J. Appl. Phys., 27, 777 (1956).   DOI
66 S. Siebentritt, 'Wide gap chalcopyrites: material properties and solar cells' Thin Solid Films, 403-404, 1 (2002).   DOI
67 R. W. Birkmire, 'Compound polycrystalline solar cells: Recent progress and Y2 K perspective' Sol. Energy Mater. Sol. Cells, 65, 17 (2001).   DOI
68 W. N. Shafarman, R. Klenk and B. E. McCandless, 'Device and material characterization of $Cu(InGa)Se_2$ solar cells with increasing band gap' J. Appl. Phys., 79, 7324 (1996).   DOI
69 A. Jayapayalan, H. Sankaranamyanan, M. Shankaradas, P. Panse, R. Narayanaswamy, C. S. Ferekides and D. L. Morel, Interface mechanisms in CIGS solar cells, CP462, NCP V Photovoltaics Program Review. 1999, 152-157, Ed. M. A1-Jassim, J. P. Thornton and J. M. Gee, The American Institute of Physics.