Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.2.117

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials  

Park, Jang-Hoon (Department of Chemical Engineering, College of Engineering, Kangwon National University)
Cho, Ju-Hyun (Department of Chemical Engineering, College of Engineering, Kangwon National University)
Kim, Jong-Su (Techno Semichem)
Shim, Eun-Gi (Techno Semichem)
Lee, Yun-Sung (School of Applied Chemical Engineering, Chonnam National University)
Lee, Sang-Young (Department of Chemical Engineering, College of Engineering, Kangwon National University)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.2, 2011 , pp. 117-124 More about this Journal
Abstract
We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.
Keywords
Lithium-ion batteries; High-voltage lithium cobalt oxide; Polarity; Gel polymer electrolyte coating; Polyimide; Ethylene-vinyl acetate copolymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. C. Liou, P. S. Ho, and R. Stierman, 'Thickness dependence of the anisotropy in thermal expansion of PMDA-ODA and BPDA-PDA thin films' Thin Solid Films, 339, 68 (1999).   DOI
2 J. H. Park, J. S. Kim, E. G. Shim, Y. T. Hong, Y. S. Lee, and S. Y. Lee, 'Polyimide gel polymer electrolytenanoencapsulated $LiCoO_2$ cathode materials for highvoltage Li-ion batteries' Electrochem. Comm., 12, 1099 (2010).   DOI
3 J. Brandrup and E. H. Immergut, "Polymer handbook 3rd edition", Wiley, New York (1999).
4 H. S. Jeong, J. H. Kim, and S. Y. Lee, 'A novel poly (vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithiumion battery' J. Mater. Chem., 20, 9180 (2010).   DOI
5 J. H. Park, J. H. Cho, W. Park, D. Ryoo, S. J. Yoon, J. H. Kim, Y. U. Jeong, and S. Y. Lee, 'Close-packed $SiO_2/poly$ (methyl methacrylate) binary nanoparticlescoated polyethylene separators for lithium-ion batteries' J. Power Sources, 195, 8306 (2010).   DOI   ScienceOn
6 Z. Chen and J. R. Dahn, 'Effect of a $ZrO_2$ coating on the structure and electrochemistry of $LixCoO_2$ when cycled to 4.5 V' Electrochem. Solid State Lett., 5, A213 (2002).   DOI
7 W. Chang, J. W. Choi, J. C. Im, and J. K. Lee, 'Effects of ZnO coating on electrochemical performance and thermal stability of $LiCoO_2$ as cathode material for lithiumion batteries' J. Power Sources, 195, 320 (2010).   DOI
8 J. Saunier, F. Alloin, J. Y. Sanchez, and G. Caillon, 'Thin and flexible lithium-ion batteries: investigation of polymer electrolytes' J. Power Sources, 119, 454 (2003).   DOI
9 S. Y. Lee, W. H. Meyer, and G. Wegner, 'Phase behavior of gel-type polymer electrolytes and its influence on electrochemical properties' ChemPhysChem, 6, 49 (2005).   DOI
10 A. M. Stephan, 'Review on gel polymer electrolytes for lithium batteries' Eur. Polym. J., 42, 21 (2006).   DOI   ScienceOn
11 F. Ciuffa, F. Croce, A. Depifanio, S. Panero, and B. Scrosati, 'Lithium and proton conducting gel-type membranes' J. Power Sources, 127, 53 (2004).   DOI
12 M. C. Choi, Y. K. Kim, and C. S. Ha, 'Polymers for flexible displays: From material selection to device applications' Prog. Polym. Sci., 33, 581 (2008).   DOI
13 B. L. Ellis, K. T. Lee, and L. F. Nazar, 'Positive electrode materials for Li-ion and Li-batteries' Chem. Mater., 22, 691 (2010).   DOI   ScienceOn
14 M. S. Whittingham, 'Lithium batteries and cathode materials' Chem. Rev., 104, 4271 (2004).   DOI
15 H. Li, Z. Wang, L. Chen, and X. Huang, 'Research on advanced materials for Li-ion batteries' Adv. Mater., 21, 4593 (2009).   DOI
16 M. R. Palacin, 'Recent advances in rechargeable battery materials: a chemist's perspective' Chem. Soc. Rev., 38, 2565 (2009).   DOI   ScienceOn
17 K. S. Lee, Y. K. Sun, J. Noh, K. S. Song, and D. W. Kim, 'Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive' Electrochem. Comm., 11, 1900 (2009).   DOI
18 L. Y. Jiang, Y. Wang, T. S. Chung, X. Y. Qiao, and J. Y. Lai, 'Polyimides membranes for pervaporation and biofuels separation' Prog. Polym. Sci., 34, 1135 (2009).   DOI
19 W. Essafi, G. Gebel, and R. Mercier, 'Sulfonated polyimide ionomers: a structural study' Macromolecules, 37, 1431 (2004).   DOI
20 J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries' Chem. Mater., 22, 587 (2010).   DOI   ScienceOn
21 A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries' Electrochem. Comm., 11, 1073 (2009).   DOI
22 Y. K. Sun, J. M. Han, S. T. Myung, S. W. Lee, and K. Amine, 'Significant improvement of high voltage cycling behavior $AlF_3-coated$ $LiCoO_2$ cathode' Electrochem. Comm., 8, 821 (2006).   DOI
23 Y. K. Sun, S. W. Cho, S. T. Myung, K. Amine, and J. Prakash, 'Effect of $AlF_3$ coating amount on high voltage cycling performance of $LiCoO_2$' Electrochim. Acta, 53, 1013 (2007).   DOI
24 D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H. J. Kim, and M. Schmidt, 'On the capacity fading of $LiCoO_2$ intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives' Electrochim. Acta, 47, 4291 (2002).   DOI
25 J. Thomas, 'A spectacularly reactive cathode' Nat. Mater., 2, 705 (2003).   DOI
26 H. Miyashiro, A. Yamanka, M. Tabuchi, S. Seki, M. Nakayama, Y. Ohno, Y. Kobayashi, Y. Mita, A. Usami, and M. Wakihara, 'Improvement of degradation at elevated temperature and at high state-of-charge storage by $ZrO_2$ coating on $LiCoO_2$' J. Electrochem. Soc., 153, A348 (2006).   DOI
27 Z. Chen and J. R. Dahn, 'Methods to obtain excellent capacity retention in $LiCoO_2$ cycled to 4.5V' Electrochim. Acta, 49, 1079 (2004).   DOI