Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.3.186

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation  

Lee, You-Shin (Department of Chemical Engineering, Soonchunhyang University)
Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
Lee, Heon-Young (R&D Center, EIG Ltd.)
Kim, Chi-Su (R&D Center, EIG Ltd.)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.3, 2010 , pp. 186-192 More about this Journal
Abstract
In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).
Keywords
Ionic liquid; $BDMI^+$ cation; Lithium secondary battery; Graphite negative electrode; Surface film; SEI; ECAFM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. R. Koch, C. Nanjundiah, G. B. Appetecchi, and B. Scrosati, ‘The interfacial stability of Li with two new solventfree ionic liquids: 1,2-Dimethyl-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995).   DOI
2 T. E. Sutto, T. T. Duncan, and T. C. Wong, ‘X-ray diffraction studies of electrochemical graphite intercalation compounds of ionic liquids’ Electrochimica Acta, 54, 5648 (2009).   DOI
3 L. L. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In-situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemisty of Solids, 69, 1232 (2008).   DOI
4 T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 386221 (1995).   DOI
5 A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997).   DOI
6 M. R. Wagner, J. H. Albering, K. -C. Moeller, J. O. Besenhard, and M. Winter ‘XRD evidence for the electrochemical formation of $Li^+(PC)_y{C_n}^– $ in PC-based electrolytes’ Electrochemistry Communications, 7, 947 (2005).   DOI   ScienceOn
7 Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Phys. Chem. C, 113, 8948 (2009).   DOI
8 Y. Yang, K. Zaghib, A. Guerfi, F. F. C. Bazito, R. M. Torresi, and J. R. Dahn, ‘Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials’ Electrochimica Acta, 52, 6346 (2007).   DOI
9 S. Lee, H. Yong, S. Kim, J. Kim, and S. Ahn, ‘Performance and thermal stability of $LiCoO_2$ cathode modified with ionic liquid’ J. Power Sources, 146, 732 (2005).   DOI   ScienceOn
10 S. Lee, H. Yong, Y. Lee, S. Kim, and S. Ahn, ‘Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries’ J. Phys. Chem. B, 109, 13663 (2005).   DOI
11 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008)   DOI
12 R. Yazami and D. Guerard, ‘Some aspects on the preparation, structure and physical and electrochemical properties of $Li_xC_6$’ J. Power Sources, 43-44, 39 (1993).
13 E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979).   DOI
14 H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000).   DOI
15 S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001).   DOI
16 A. B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman, ‘Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications’ J. Electrochem. Soc., 146, 1687 (1999).   DOI
17 F. F. C. Bazito, Y. Kawano, and R. M. Torresi, ‘Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium’ Electrochimica Acta, 52, 6427 (2007).   DOI
18 J. Fuller, R. T. Carlin, and R. A. Osteryoung, ‘The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties’ J. Electrochem. Soc., 144, 3881 (1997).   DOI
19 M. J. Monteiro, F. F. C. Bazito, and L. J. A. Siqueira, ‘Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid’ J. Phys. Chem. B, 112, 2102 (2008).   DOI
20 V. R. Koch, C. Nanjundiah, G. B. Appetecch, and B. Scrosati, ‘The interfacial stability of Li with two new solvent-free ionic liquids: 1,2-dimethly-3-propylimidazolium imide and methide’ J. Electrochem. Soc., 142, L116 (1995).   DOI
21 Y. Saito, T. Umecky, U. Niwa, T. Sakai, and S. Maeda, ‘Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent’ J. Phys. Chem. B, 111, 11794 (2007).   DOI
22 M. Holzapfel, C. Jost, and P. Novak, ‘Stable cycling of graphite in an ionic based electrolyte’ Chem. Commun., 2098 (2004).
23 B. Garcia, S. Lavallee, G. Perron, C. Michot, and M. Armand, ‘Room temperature molten salts as lithium battery electrolyte’ Electrochimica Acta, 49, 4583 (2004).   DOI
24 W. Xu, J. Xiao, D. Wang, J. Zhang, and J.-G. Zhang, ‘Effects of nonaqueous electrolytes on the performance of lithium/air batteries’ J. Electrochem. Soc., 157, A219 (2010).   DOI
25 Y. Fu, C. Chen, C. Qiu, and X. Ma, ‘Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries’ J. Appl. Electrochem., 39, 2597 (2009).   DOI
26 T. Sugimoto, M. Kikuta, E. Eshiko, M. Kono, and M. Ishikawa, ‘Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties’ J. Power Sources, 183, 436 (2008).   DOI
27 K. Hayashi, Y. Nemoto, K. Akuto, and Y. Sakurai, ‘Alkylated imidazolium salt electrolyte for lithium cells’ J. Power Sources, 146, 689 (2005).   DOI
28 L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak, ‘In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects’ J. Physics and Chemistry of Solids, 69, 1232 (2008).   DOI
29 S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and B. Terada, ‘Imidazolium-based room-temperature ionic liquid for lithium secondary batteries’ J. Electrochem. Soc., 154, A173 (2007).   DOI
30 M. Holzapfel, C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig, H. Buqa, and P. Novak, ‘Stabilization of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study’ Carbon, 43, 1488 (2005).   DOI