Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.3.181

Physical and Electrochemical Properties of Polyaniline-Ionic Liquid Composite  

Bang, Joo-Yong (Probiond Co., Ltd.)
Jeong, Woo-Sung (Probiond Co., Ltd.)
Park, Hyung-Soon (Probiond Co., Ltd.)
Chung, Kyung-Ho (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University)
Nath, Narayan Chandra Deb (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University)
Lee, Jae-Joon (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University)
Cha, Eun-Hee (Research Center for Convergence Technology, Hoseo University)
Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.3, 2010 , pp. 181-185 More about this Journal
Abstract
Polyaniline-ionic liquid composite was prepared and investigated its physical and electrochemical properties. The quasi-solidification was presented in imidazolium-based ionic liquid (1-methly-3-propylimidazolium iodide, PMI-I) containing above 30 wt% of polyaniline (emeraldine base), which exhibited around 80% decrease of conductivity compared to pristine ionic liquid, resulting in fibril structure trough ${\pi}-{\pi}$ self-assembled of imidazolium aromatic ring of ionic liquid on polyaniline framework.
Keywords
Ionic Liquid; Polymer Composite; Quasi-Solidification; Quasi Solid-State Electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Y. Cha, Y. G. Lee, M. S. Kang, and Y. S. Kang, ‘Correlation between ion conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte’, J. Photochem. Photobio. A. Chem., 211, 193 (2010).   DOI
2 M. Gratzel ‘Dye-sensitized solar cell’ J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003).   DOI
3 S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’, Chem. Rev., 107, 1324 (2007).   DOI
4 B. O’Regan and M. Grätzel, ‘A low-cost, high efficiency solar cell based on dye-sensitized colloidal $TiO_2$ film’, Nature, 353, 737 (1991).   DOI
5 S. Noda, K. Nagano, E. Inoue, T. Egi, T. Nakashima, N. Imawaka, M. Kanayama, S. Iwata, K. Toshima, K. Nakada, and K. Yoshino, ‘Development of large size dye-sensitized solar cell modules with high temperature durability’, Syn. Metals, 159, 2355 (2009).   DOI
6 P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Gratzel, ‘Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells’, J. Am. Chem. Soc., 125, 1166 (2003).   DOI
7 E. Stathatosa, P. Lianos,V. Jovanovski, and B. Orel, ‘Dyesensitized photoelectrochemical solar cells based on nanocomposite organic-inorganic materials’, J. Photochem. Photobio. A: Chem., 169, 57 (2005).   DOI
8 Z. Huo, S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan, and X. Fang, ‘Nanocomposite gel electrolyte with large enhanced charge transport porperties of an I3-/I- redox couple for quasi-solid-state dye-densitized solar cell’, Solar Energy Mater. Solar Cells, 91, 1959 (2007).   DOI
9 K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S. H. Lee, ‘Metallic transport in polyaniline’, Nature, 441, 65 (2006).   DOI