1 |
S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, ‘Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes’ J. Chem. Soc. Dalton Trans., 2247 (1985).
|
2 |
R. Ma, J. Liang, B. Wei, B. Zhang, and C. Xu, ‘Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte’ Bull. Chem. Soc. Jpn., 72, 2563 (1999).
DOI
|
3 |
C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, ‘Carbon Nanotubes-the Route Toward Applications’ Appl. Phys. Lett., 70, 1480 (1997).
DOI
|
4 |
Shidong Fei, Jinhua Chen, Shouzhuo Yao, Guohong Deng, Lihua Nie and Yafei Kuang. ‘Electroreduction of -glucose on CNT/graphite electrode modified by Zn and Zn--Fe alloy’ J. Solid. State. Electrochem., 9, 498 (2005).
DOI
|
5 |
M. O. Finot, G. D. Braybrook, and M. T. McDermott, ‘Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 466, 234 (1999).
DOI
|
6 |
M. O. Finot and M. T. McDermott, ‘Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 488, 125 (2000).
DOI
|
7 |
Y. Li and G. Shi, ‘Electrochemical Growth of Two-Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode’ J. Phys. Chem. B, 109, 23787 (2005).
DOI
|
8 |
M. Josowicz and J. Janata, ‘in Electroactive Polymers’ ed. B. Scrosati, Chapman and Hall, New York, 1993, p. 310.
|
9 |
R. W. Murray, ‘in Molecular Design of Electrode Surfaces’ ed. R. W. Murray, Wiley, New York, 1992, p. 1.
|
10 |
A. Merz, ‘Direct electrochemical redox of tyrosinase at silver electrodes’ Top. Curr. Chem., 152, 49 (1990).
DOI
|
11 |
J. Heinze, ‘Electronically conducting polymers’ Top. Curr. Chem., 152, 1 (1990).
DOI
|
12 |
Z. Chen, Z. Pourabedi, and D.B. Hibbert, ‘Stripping voltammetry of Pb(II), Cu(II), and Hg(II) at a Nafion-coated glassy carbon electrode modified by neutral ionophores’ Electroanalysis, 11, 964 (1999).
DOI
|
13 |
S. Maria da Silva, ‘Determination of lead in the absence of supporting electrolyte using carbon fiber ultramicroelectrode without mercury film’ Electroanalysis, 10, 722 (1998).
DOI
|
14 |
M. V. Pishko, A. C. Michael, and Adam Heller, ‘Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels’ Anal. Chem., 63, 2269 (1991).
|
15 |
T. J. Ohara, R. Rajagopalan, and A. Heller, ‘ ‘Wired’ enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances’ Anal. Chem., 66, 2451 (1994).
DOI
|
16 |
H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H.C. Kim, ‘Glucose sensor using a microfabricated electrode and electropolymerized bilayer films’ Biosens. Bioelectron., 17, 251 (2002).
DOI
|
17 |
B. A. Gregg and A. Heller, ‘Redox polymer films containing enzymes’ J. Phys. Chem., 95, 5976 (1991).
DOI
|
18 |
J. Wang, ‘Present and future applications of carbon nanotubes to analytical science’ Electroanalysis, 17, 7-14 (2005).
DOI
|
19 |
A. Wei, X. W. Wei, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, ‘Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition’ Appl. Phys. Lett., 89, 123902 (2006).
DOI
|
20 |
X. Luo, A Morrin, A. J. Killard, and M. R. Smyth, ‘Application of Nanoparticles in Electrochemical Sensors and Biosensors’ Electroanalysis, 18, 319-326 (2006).
DOI
|
21 |
Q. Chi and S. Dong, ‘Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codepositio’ Anal. Chim. Acta., 310, 429 (1995).
DOI
|
22 |
H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, and D. Qi, ‘Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, -galactosidase and mutarotase in -cyclodextrin polyme’ Anal. Chim. Acta., 358, 137 (1998).
DOI
|
23 |
C. L. Chuang, Y. J. Wang, and H. L. Lan, ‘Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase’ Anal. Chim. Acta., 353, 37 (1997).
DOI
|
24 |
I.-H. Yeo and D. C. Johnson, ‘Electrochemical response of small organic molecules at nickel-copper alloy electrode’ J. Electroanal. Chem., 495, 110 (2001).
DOI
|
25 |
C. Locatelli and G. Torsi, ‘Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference’ J. Electroanal. Chem., 509, 80 (2001).
DOI
|
26 |
Z. Hu, C. J. Seliskar, and W. R. Heineman, ‘PANincorporated Nafion-modified pectroscopic graphite electrodes for voltammetric stripping determination f lead’
Anal. Chim. Acta., 369, 93 (1998).
DOI
|
27 |
D. M. Fraser, S. M. Zakeeruddin, and M. Gratzel, ‘Towards mediator design II. Optimization of mediator global charge for the mediation of glucose oxidase of Aspergilus niger’ J. Electroanal. Chem., 359, 125 (1993).
DOI
|
28 |
E. S. Dodsworth, A. A. Vlcek, and A. B. P. Lever, ‘Factorization of Ligand-Based Reduction Potentials’ Inorg. Chem., 33, 1045 (1994).
DOI
|
29 |
S. M. Zakeeruddin, D. M. Fraser, M-K Nazeeruddin, and M. Gratzel, ‘Towards mediator design: characterization of tris-(4,4'-substituted-2,2'- bipyridine complex of iron(II), ruthenium(II) and osmium(II) as mediators for glucose
oxidase of Aspergilus niger and other redox proteins’ J. Electroanal. Chem., 337, 253 (1992).
DOI
ScienceOn
|
30 |
Y.-B. Choi, and H.-H. Kim, ‘Synthesis of osmium redox complex and its application for biosensor using an electrochemical method’ Journal of the Korean Electrochemical Society., 10, 152 (2007).
과학기술학회마을
DOI
|
31 |
F. Bedioui, J. Devynck, and C. Bied-Charreton, ‘Immobilization of metalloporphyrins in electropolymerized films: design and applications’ Acc. Chem. Res., 28, 30 (1995).
DOI
|
32 |
Leonidas G. Bachas, Lawrence Cullen, Richard S. Hutchins and Donna L. Scott ‘Synthesis, Characterization and electrochemical polymerization of eight transition-metal complexes of 5-amino-1,10-phenanthroline’ J. Chem. Soc., Dalton Trans., 1571 (1997).
|
33 |
P. G. Pickup and R. A. Osteryoung, ‘Electropolymerization of iron phenanthrolines and voltammetric response for pH and application on electrocatalytic sulfite oxidation’ Inorg. Chem., 24, 2707 (1985).
DOI
|
34 |
I. de Gregori, F. Bedioui, and J. Devynck, ‘Electrooxidative and electroreductive polymerization of 5-amino-1, 10-phenanthroline ligand, iron and cobalt complexes in acetonitrile media’ J. Electroanal. Chem. Interfacial Electrochem., 238, 197 (1987).
DOI
|
35 |
F. W. M. Nyasulu and H. A. Mottola, ‘Electrochemical behavior of 5-amino-1,10-phenanthroline and oxidative electropolymerization of tris[5-amino-1,10-phenanthroline] iron(II)’ J. Electroanal. Chem. Interfacial Electrochem., 239, 175 (1988).
DOI
|
36 |
C. D. Ellis, L. D. Margerum, R. W. Murray, and T. J. Meyer, ‘Oxidative electropolymerization of polypyridyl complexes of ruthenium’ Inorg. Chem., 22, 1283 (1983).
DOI
|
37 |
C. Taylor, G. Kenausis, I. Katakis, and A. Heller, ‘Wiring of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with J. Electroanal. Chem., 396, 511 (1995).
DOI
|