Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.1.050

Electrochemical Immobilization of Osmium Complex onto the Carbon Nano-Tube Electrodes and its Application for Glucose sensor  

Choi, Young-Bong (Department of Chemistry, Dankook University)
Jeon, Won-Yong (Department of Chemistry, Dankook University)
Kim, Hyug-Han (Department of Chemistry, Dankook University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.1, 2010 , pp. 50-56 More about this Journal
Abstract
The multi-wall carbon nano-tube composite mixed with carbon paste electrode presented more sensitive and selective amperometric signals in the oxidation of glucose than general screen-printed carbon electrodes(SPCEs). Redox mediators to transport electrodes from enzyme to electrodes are very important part in the biosensor. A novel osmium redox complex was synthesized by the coordinating pyridine group containing primary amines which were electrochemically immobilized onto the MWCNT-SPCEs surface. Electrochemical studies of osmium complexes were investigated by cyclic voltammetry, chronoamperometry. The surface coverage of osmium complexes on the modified carbon nano-tube electrodes were significantly increased at 100 time (${\tau}_0=2.0\;{\times}\;10^{-9}\;mole/cm^2$) compared to that of the unmodified carbon electrodes. It's practical application of the glucose biosensor demonstrated that it shows good linear response to the glucose concentration in the range of 0-10 mM.
Keywords
Glucose biosensor; Redox mediator; Osmium complexes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, ‘Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes’ J. Chem. Soc. Dalton Trans., 2247 (1985).
2 R. Ma, J. Liang, B. Wei, B. Zhang, and C. Xu, ‘Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte’ Bull. Chem. Soc. Jpn., 72, 2563 (1999).   DOI
3 C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, ‘Carbon Nanotubes-the Route Toward Applications’ Appl. Phys. Lett., 70, 1480 (1997).   DOI
4 Shidong Fei, Jinhua Chen, Shouzhuo Yao, Guohong Deng, Lihua Nie and Yafei Kuang. ‘Electroreduction of $\alpha$-glucose on CNT/graphite electrode modified by Zn and Zn--Fe alloy’ J. Solid. State. Electrochem., 9, 498 (2005).   DOI
5 M. O. Finot, G. D. Braybrook, and M. T. McDermott, ‘Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 466, 234 (1999).   DOI
6 M. O. Finot and M. T. McDermott, ‘Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 488, 125 (2000).   DOI
7 Y. Li and G. Shi, ‘Electrochemical Growth of Two-Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode’ J. Phys. Chem. B, 109, 23787 (2005).   DOI
8 M. Josowicz and J. Janata, ‘in Electroactive Polymers’ ed. B. Scrosati, Chapman and Hall, New York, 1993, p. 310.
9 R. W. Murray, ‘in Molecular Design of Electrode Surfaces’ ed. R. W. Murray, Wiley, New York, 1992, p. 1.
10 A. Merz, ‘Direct electrochemical redox of tyrosinase at silver electrodes’ Top. Curr. Chem., 152, 49 (1990).   DOI
11 J. Heinze, ‘Electronically conducting polymers’ Top. Curr. Chem., 152, 1 (1990).   DOI
12 Z. Chen, Z. Pourabedi, and D.B. Hibbert, ‘Stripping voltammetry of Pb(II), Cu(II), and Hg(II) at a Nafion-coated glassy carbon electrode modified by neutral ionophores’ Electroanalysis, 11, 964 (1999).   DOI
13 S. Maria da Silva, ‘Determination of lead in the absence of supporting electrolyte using carbon fiber ultramicroelectrode without mercury film’ Electroanalysis, 10, 722 (1998).   DOI
14 M. V. Pishko, A. C. Michael, and Adam Heller, ‘Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels’ Anal. Chem., 63, 2269 (1991).
15 T. J. Ohara, R. Rajagopalan, and A. Heller, ‘ ‘Wired’ enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances’ Anal. Chem., 66, 2451 (1994).   DOI
16 H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H.C. Kim, ‘Glucose sensor using a microfabricated electrode and electropolymerized bilayer films’ Biosens. Bioelectron., 17, 251 (2002).   DOI
17 B. A. Gregg and A. Heller, ‘Redox polymer films containing enzymes’ J. Phys. Chem., 95, 5976 (1991).   DOI
18 J. Wang, ‘Present and future applications of carbon nanotubes to analytical science’ Electroanalysis, 17, 7-14 (2005).   DOI
19 X. Luo, A Morrin, A. J. Killard, and M. R. Smyth, ‘Application of Nanoparticles in Electrochemical Sensors and Biosensors’ Electroanalysis, 18, 319-326 (2006).   DOI
20 A. Wei, X. W. Wei, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, ‘Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition’ Appl. Phys. Lett., 89, 123902 (2006).   DOI
21 Q. Chi and S. Dong, ‘Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codepositio’ Anal. Chim. Acta., 310, 429 (1995).   DOI
22 H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, and D. Qi, ‘Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, $\beta$-galactosidase and mutarotase in $\beta$-cyclodextrin polyme’ Anal. Chim. Acta., 358, 137 (1998).   DOI
23 C. L. Chuang, Y. J. Wang, and H. L. Lan, ‘Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase’ Anal. Chim. Acta., 353, 37 (1997).   DOI
24 I.-H. Yeo and D. C. Johnson, ‘Electrochemical response of small organic molecules at nickel-copper alloy electrode’ J. Electroanal. Chem., 495, 110 (2001).   DOI
25 Y.-B. Choi, and H.-H. Kim, ‘Synthesis of osmium redox complex and its application for biosensor using an electrochemical method’ Journal of the Korean Electrochemical Society., 10, 152 (2007).   과학기술학회마을   DOI
26 C. Locatelli and G. Torsi, ‘Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference’ J. Electroanal. Chem., 509, 80 (2001).   DOI
27 Z. Hu, C. J. Seliskar, and W. R. Heineman, ‘PANincorporated Nafion-modified pectroscopic graphite electrodes for voltammetric stripping determination f lead’ Anal. Chim. Acta., 369, 93 (1998).   DOI
28 D. M. Fraser, S. M. Zakeeruddin, and M. Gratzel, ‘Towards mediator design II. Optimization of mediator global charge for the mediation of glucose oxidase of Aspergilus niger’ J. Electroanal. Chem., 359, 125 (1993).   DOI
29 E. S. Dodsworth, A. A. Vlcek, and A. B. P. Lever, ‘Factorization of Ligand-Based Reduction Potentials’ Inorg. Chem., 33, 1045 (1994).   DOI
30 S. M. Zakeeruddin, D. M. Fraser, M-K Nazeeruddin, and M. Gratzel, ‘Towards mediator design: characterization of tris-(4,4'-substituted-2,2'- bipyridine complex of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergilus niger and other redox proteins’ J. Electroanal. Chem., 337, 253 (1992).   DOI   ScienceOn
31 I. de Gregori, F. Bedioui, and J. Devynck, ‘Electrooxidative and electroreductive polymerization of 5-amino-1, 10-phenanthroline ligand, iron and cobalt complexes in acetonitrile media’ J. Electroanal. Chem. Interfacial Electrochem., 238, 197 (1987).   DOI
32 F. Bedioui, J. Devynck, and C. Bied-Charreton, ‘Immobilization of metalloporphyrins in electropolymerized films: design and applications’ Acc. Chem. Res., 28, 30 (1995).   DOI
33 Leonidas G. Bachas, Lawrence Cullen, Richard S. Hutchins and Donna L. Scott ‘Synthesis, Characterization and electrochemical polymerization of eight transition-metal complexes of 5-amino-1,10-phenanthroline’ J. Chem. Soc., Dalton Trans., 1571 (1997).
34 P. G. Pickup and R. A. Osteryoung, ‘Electropolymerization of iron phenanthrolines and voltammetric response for pH and application on electrocatalytic sulfite oxidation’ Inorg. Chem., 24, 2707 (1985).   DOI
35 F. W. M. Nyasulu and H. A. Mottola, ‘Electrochemical behavior of 5-amino-1,10-phenanthroline and oxidative electropolymerization of tris[5-amino-1,10-phenanthroline] iron(II)’ J. Electroanal. Chem. Interfacial Electrochem., 239, 175 (1988).   DOI
36 C. D. Ellis, L. D. Margerum, R. W. Murray, and T. J. Meyer, ‘Oxidative electropolymerization of polypyridyl complexes of ruthenium’ Inorg. Chem., 22, 1283 (1983).   DOI
37 C. Taylor, G. Kenausis, I. Katakis, and A. Heller, ‘Wiring of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4,4^ J. Electroanal. Chem., 396, 511 (1995).   DOI