Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.1.040

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition  

Song, You-Jung (Department of Chemical and Environmental Engineering, Soongsil University)
Han, Sang-Beom (Department of Chemical and Environmental Engineering, Soongsil University)
Lee, Hyun-Hwi (Pohang Accelerator Laboratory)
Park, Kyung-Won (Department of Chemical and Environmental Engineering, Soongsil University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.1, 2010 , pp. 40-44 More about this Journal
Abstract
In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.
Keywords
$Cu_2O$ Nanocube; Size control; Pulse electrodeposition; Phase transition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. R. Markworth, X. Liu, J.Y. Dai, W. Fan, T.J. Marks, and P. P. H. Chang, ‘Coherent island formation of $Cu_2O$, films grown by chemical vapor deposition on MgO(110)’ J. Mater. Res., 16, 2408 (2001).   DOI
2 M. C. Tsai, T. K. Yeh, and C. H. Tsai, ‘An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation’ Electrochem. Commun., 8, 1445 (2006).   DOI
3 X. Chen, N. Li, K. Eckhard, L. Stoica, W. Xia, J. Assmann, M. Muhler, and W. Schuhmann, Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes’ Electrochem. Commun., 9, 1348 (2007).   DOI   ScienceOn
4 M. Sun, G. Zangari, M. Shamsuzzoha, and R.M. Metzger, ‘Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite’ Appl. Phys. Lett., 78, 2964 (2001).   DOI
5 C. D. Wagner, W. M. Riggs, L. E. Davis, J. E. Moulder, and G. E. Muilenber, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation Physical Electronics Division, USA, 1979.
6 A. O. Musa, T. Akomolafe, and M. J. Carter, ‘Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties’ Sol. Energy Mater. Sol. Cells, 51, 305 (1998).   DOI   ScienceOn
7 T. Gao, G. Meng, Y. Wang, S. Sun, and L. Zhang, ‘Electrochemical synthesis of copper nanowires’ J. Phys. Condens. Matter., 14, 355 (2002).   DOI
8 J. Xu and D. Xue, ‘Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals’ Acta Mater., 55, 2397 (2007).   DOI   ScienceOn
9 C. Q. Zhang, J.P. Tu, X. H. Huang, Y. F. Yuan, X. T. Chen, and F. Mao, ‘Preparation and electrochemical performances of cubic shape $Cu_2O$ as anode material for lithium ion batteries’ J. Alloy Comd., 441, 52 (2007).   DOI
10 P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, ‘Photoelectrochemistry of Electrodeposited $Cu_2O$’ J. Electro1hem. Soc., 147, 486 (2000).   DOI
11 A. P. Alivisatos, ‘Semiconductor Clusters, Nanocrystals, and Quantum Dots’ Science, 271, 933 (1996).   DOI   ScienceOn
12 M. J. Siegfried and K.-S. Choi, ‘Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth’ Angew. Chem. Int. Ed., 44, 3218 (2005).   DOI
13 A. L. Daltina, A. Addadb, and J. P. Choparta, ‘Potentiostatic deposition and characterization of cuprous oxide films and nanowires’ J. Cryst. Growth, 282, 414 (2005).   DOI
14 Z. Z. Chen, E. W. Shi, Y.Q. Zheng, W. J. Li, B. Xiao, and J. Y. Zhuang, ‘Growth of hex-pod-like $Cu_2O$ whisker under hydrothermal conditions’ J. Cryst. Growth, 249, 294 (2003).   DOI
15 B. Balamurugan and B. R. Mehta, ‘Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation’ Thin Solid Films, 396, 90 (2001).   DOI
16 L. Gou and C. J. Murphy, ‘Solution-Phase Synthesis of Cu2O Nanocubes’ Nano Lett., 3, 231 (2003).   DOI
17 Z. Wu, M. Shao, W. Zhang, and Y. Ni, ‘Large-scale synthesis of uniform Cu2O stellar crystals via microwaveassisted route’ J. Cryst. Growth, 260, 490 (2004).   DOI
18 P. Taneja, R. Banerjee, and P. Ayyub, ‘Structure and properties of nanocrystalline Ag and $Cu_2O$ synthesized by high pressure sputtering’ Scr. Mater., 44, 1915 (2001).   DOI
19 G. P. Pollack and D. Trivich, ‘Photoelectric properties of cuprous oxide’ J. Appl. Phys., 46, 163 (1975).   DOI
20 R. Liu, E.A. Kulp, F. Oba, E.W. Bohannan, F. Ernst, and J.A. Switzer, ‘Epitaxial Electrodeposition of High-Aspect-Ratio $Cu_2O$ (110) Nanostructures on InP(111)’ Chem. Mater., 17, 725 (2005).   DOI
21 A. O. Musa, T. Akomolafe, and M. J. Carter, ‘Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties’ Sol. Energ. Mat. Sol. C., 51, 305 (1998).   DOI   ScienceOn
22 H. Xu, W. Wang, and W. Zhu, ‘Shape Evolution and Size- Controllable Synthesis of Cu2O Octahedra and Their Morphology- Dependent Photocatalytic Properties’ J. Phys. Chem. B, 110, 13829 (2006).   DOI
23 S. T. Shishiyanu, T. S. Shisiyanu, and O. I. Lupan, ‘Novel $NO_2$ gas sensor based on cuprous oxide thin films’ Sensors Actuators B, 113, 468 (2006).   DOI
24 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, ‘Nano-sized transition-metal oxides as negativeelectrode materials forlithium-ion batteries’ Nature, 407, 496 (2000).   DOI