Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.1.019

Mechanism of Surface Film Formation on Graphite Negative Electrodes and Its Correlation with Electrolyte in Lithium Secondary Batteries  

Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.1, 2010 , pp. 19-33 More about this Journal
Abstract
The surface film, which is formed on graphite negative electrodes during the initial charging, is a key component in lithium secondary batteries. The battery reactions are strongly affected by the nature of the surface film. It is thus very important to understand the physicochemical properties of the surface film. On the other hand, the surface film formation is a very complicated interfacial phenomenon occurring at the graphite/electrolyte interface. In studies on electrode surfaces in lithium secondary batteries, in-situ experimental techniques are very important because the surface film is highly reactive and unstable in the air. In this respect electrochemical atomic force microscopy (ECAFM) is a useful tool for direct visualizing electrode/solution interfaces at which various electrochemical reactions occur under potential control. In the present review, mechanism of surface film formation and its correlation with electrolyte are summarized on the basis of in-situ ECAFM studies for understanding of the nature of the surface film on graphite negative electrodes.
Keywords
Lithium secondary battery; Graphite negative electrode; Surface film; SEI; ECAFM; Cointercalation; EC; PC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, and G. Salitra, ‘Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides’ J. Electrochem. Soc., 145, 3024 (1998).   DOI
2 E. Peled, ‘The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model’ J. Electrochem. Soc., 126, 2047 (1979).   DOI
3 R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of $Li_xC_6$’ J. Power Sources, 43-44, 39 (1993).
4 T. Tran and K. Kinoshita, ‘Lithium intercalation deintercalation behavior of basal and edge planes of highly oriented pyrolytic-graphite and graphite powder’ J. Electroanal. Chem., 386, 221 (1995).   DOI
5 A. Funabiki, M. Inaba, and Z. Ogumi, ‘AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite’ J. Power Sources, 68, 227 (1997).   DOI
6 D. Bar-Tow, E. Peled, and L. Burstein, ‘A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries’ J. Electrochem. Soc., 146, 824 (1999).   DOI
7 E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, ‘Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies’ J. Power Sources, 97-98, 52 (2001).   DOI   ScienceOn
8 K. Edstrom, M. Herstedt, and D. P. Abraham, ‘A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries’ J. Power Sources, 153, 380 (2006).   DOI   ScienceOn
9 O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli ‘Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems’ J. Power Sources, 43-44, 47 (1993).
10 Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, ‘The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition’ Electrochim. Acta, 39, 2559 (1994).   DOI
11 D. Linden, “Handbook of Batteries”, McGraw-Hill, New York (1995).
12 M. Winter and J. O. Besenhard, M. E. Spahr, and P. Novak, ‘Insertion electrode materials for rechargeable lithium batteries’ Adv. Mater., 10, 725 (1998).   DOI
13 J. R. Dahn, ‘Phase-diagram of $Li_xC_6$’ Phys. Rev., B44, 9170 (1991).
14 T. Ohzuku, Y. Iwakoshi, and K. Sawai, ‘Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell’ J. Electrochem. Soc., 140, 2490 (1993).   DOI
15 Z. Jiang, M. Alamgir, and K. M. Abraham, ‘The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells’ J. Electrochem. Soc., 142, 333 (1995).   DOI
16 0E. Peled, “Handbook of Battery Materials”, 419, Wiley-VCH, Weinheim (1999).
17 M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘In situ Raman study on electrochemical Li intercalation into graphite’ J. Electrochem. Soc., 142, 20 (1995).   DOI
18 A. Herold, ‘Recherches sur les composes dinsertion du graphite’ Bull. Soc. Chim. Fr., 187, 999 (1955).
19 R. Fong, U. von Sacken, and J. R. Dahn, ‘Studies of lithium intercalation into carbons using nonaqueous electrochemical cells’ J. Electrochem. Soc., 137, 2009 (1990).   DOI
20 M. Suga, Y. Konyuba, S. Iwamatsu, Y. Watanabe, J. Osuga, H. Nishiyama, T. Ogura, and C. Sato, “Extended Abstracts of the 50th Battery Symposium”, 265, Kyoto, Japan (2009).
21 G. Eichinger, ‘Cathodic decomposition reactions of propylene carbonate’ J. Electroanal. Chem., 74, 183 (1976).   DOI
22 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions’ Electrochemical and Solid-State Letters, 6, A13 (2003).   DOI
23 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe and Z. Ogumi, ‘Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction’ J. Power Sources, 175, 540 (2008)   DOI
24 S.-K. Jeong, H. Seo, D. Kim, H. Han, J. Kim, Y. Lee, Y. Iriyama, T, Abe, and Z, Ogumi, ‘Suppression of dendritic lithium formation by using concentrated electrolyte solutions’ Electrochemistry Communications, 10, 635 (2008).   DOI
25 A. N. Dey and B. P. Sullivan, ‘The electrochemical decomposition of propylene carbonate on graphite’ J. Electrochem. Soc., 117, 222 (1970).   DOI
26 J. O. Besenhard and H. P. Fritz, ‘Cathodic reduction of graphite in organic solutions of alkali and $NR^{4+}$ salts’ J. Electroanal. Chem., 53, 329 (1974).   DOI
27 M. Arakawa and J. Yamaki, ‘The cathodic decomposition of propylene carbonate in lithium batteries’ J. Electroanal. Chem., 219, 273 (1987).   DOI
28 M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode at elevated temperatures’ Electrochemistry, 71, 1132 (2003).
29 M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, ‘Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures’ Langmuir, 20, 1348 (2004).   DOI
30 Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film’ Langmuir, 25, 12766 (2009).   DOI
31 F. Sagane, T. Abe, and Z. Ogumi, ‘$Li^+$-ion Transfer through the interface between $Li^+$-ion conductive ceramic electrolyte and $Li^+$-ion-concentrated propylene carbonate solution’ J. Physical Chemistry C, 113, 20135 (2009).   DOI
32 K. Xu, ‘Charge-transfer process at graphite/electrolyte interface and the solvation sheath structure of $Li^+$ in nonaqueous electrolytes’ J. Electrochem. Soc., 154, A162 (2007).   DOI
33 Z. Ogumi, T. Abe, T. Fukutsuka, S. Yamate, and Y. Iriyama, ‘Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte’ J. Power Sources, 127, 72 (2004).   DOI
34 T. Saeki, H. Ohtani, A. Ito, K. Tanaka, and O. Hatozaki, “Extended Abstracts of the 50th Battery Symposium”, 169, Kyoto, Japan (2009).
35 Y. Yamada, Y. Koyama, T. Abe, and Z. Ogumi, ‘Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonatecontaining electrolytes’ J. Physical Chemistry C, 113, 8948 (2009).   DOI
36 A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagace, A. Vijh, and K. Zaghib. ‘Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance’ J. Power Sources, 195, 845 (2010).   DOI   ScienceOn
37 A. Kanetomo, M. Egashira, N. Yoshimoto, and M. Morita, “Extended Abstracts of the 50th Battery Symposium”, 162, Kyoto, Japan (2009).
38 H. Nakagawa a, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, ‘Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells’ J. Power Sources, 174, 1021 (2007).   DOI   ScienceOn
39 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of cosolvents in ethylene carbonate-based solutions’ Electrochim. Acta, 47, 1975 (2002).   DOI
40 W. Huang and R. Frech, ‘In situ Raman studies of graphite surface structures during lithium electrochemical intercalation’ J. Electrochem. Soc., 145, 765 (1998).   DOI
41 S.-K. Jeong, ‘AFM study on surface film formation on a graphite negative electrode in a $LiPF_6$-based non-aqueous solution’ J. Academia-Industrial Technology, 7, 1313 (2006).
42 H. X. You, J. M. Lau, S. Zhang, and L. Yu, ‘Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology’ Ultramicroscopy, 82, 297 (2000).   DOI
43 M. Morita, Y. Asai, N. Yoshimoto, and M. Ishikawa, ‘A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts’ J. Chem. Soc., Faraday Trans., 94, 3451 (1998).   DOI
44 B. Klassen, R. Aroca, M. Nazri, and G. A. Nazri, ‘Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries’ J Phys. Chem. B, 102, 4795 (1998).   DOI   ScienceOn
45 H. Yoshida, T. Fukunaga, T. Hazama, M. Mizutani, and M. Yamachi, ‘Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging’ J. Power Sources, 68, 311 (1997).   DOI
46 S. Mori, H. Asahina, H. Suzuki, A. Yonei, and K. Yokoto, ‘Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions’ J. Power Sources, 68, 59 (1997).   DOI
47 M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study of well-defined graphite/electrolyte interface polarized in propylene carbonate solution containing 12-crown-4’ Electrochemistry, 67, 1153 (1999).
48 M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, ‘Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution’ Langmuir, 12, 1535 (1996).   DOI
49 M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi, ‘Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate’ J. Power Sources, 68, 221 (1997).   DOI
50 M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, and Z. Ogumi, ‘STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution’ Electrochim. Acta, 45, 99 (1999).   DOI
51 Z. Ogumi, S.-K. Jeong, M Inaba, and T. Abe, ‘Surface film formation on graphite negative electrodes in rechargeable lithium batteries’ Macromol. Symp., 156, 195 (2000).   DOI
52 S.-K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, ‘Surface film formation on graphite negative electrode in lithiumion batteries: AFM study in an ethylene carbonate-based solution’ J. Electrochem. Soc., 148, A989 (2001).   DOI
53 S.-K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe, and Z. Ogumi, ‘Surface film formation on a graphite negative electrode in lithium-ion batteries: Atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions’ Langmuir, 17, 8281 (2001).   DOI
54 Z. Ogumi, M. Inaba, T. Abe, and S.-K. Jeong, “Studies in Surface Science and Catalysis”, 929, Elsevier Science B.V., Amsterdam (2001).
55 D. Aurbach, J. S. Gnanaraj, M. D. Levi, E. A. Levi, J. E. Fischer, and A. Claye, ‘On the correlation among surface chemistry, 3D structure, morphology, electrochemical and impedance behavior of various lithiated carbon electrodes’ J. Power Sources, 97-98, 92 (2001).   DOI
56 D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, ‘On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries’ Electrochim. Acta, 45, 67 (1999).   DOI
57 D. Aurbach, ‘Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries’ J. Power Sources, 89, 206 (2000).   DOI
58 S.-K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, ‘AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries’ J. Power Sources, 119-121, 555 (2003).   DOI
59 C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, ‘Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries’ J. Power Sources, 68, 277 (1997).   DOI   ScienceOn
60 E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, ‘An advanced tool for the selection of electrolyte components for rechargeable lithium batteries’ J. Electrochem. Soc., 145, 3482 (1998).   DOI
61 Z. Ogumi, A. Sano, M. Inaba, and T. Abe, ‘Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode’ J. Power Sources, 97-98, 156 (2001).   DOI
62 J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, ‘Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes’ J. Power Sources, 54, 228 (1995).   DOI
63 Y. Ein-Eli, S. R. Thomas, V. Koch, D. Aurbach, B. Markovsky, and A. Schechter, ‘Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries’ J. Electrochem. Soc., 143, L273 (1996).   DOI
64 M. Winter, G. H. Wrodingg, J. O. Besenhard, W. Biberacher, and P. Novak, ‘Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes’ J. Electrochem. Soc., 147, 2427 (2000).   DOI
65 D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, ‘The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair Type Batteries’ J. Electrochem. Soc., 141, 603 (1994).   DOI
66 D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, ‘The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries’ J. Electrochem. Soc., 142, 2882 (1995).   DOI
67 D. Aurbach, B. Markovsky, A. Schechter, and E. Ein-Eli, ‘A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures’ J. Electrochem. Soc., 143, 3809 (1996).   DOI
68 Y. Ein-Eli, S. F. McDevitt, D. Aurbach, B. Markovsky, and A. Schechter, ‘Methyl propyl carbonate: A promising single solvent for Li-ion battery electrolytes’ J. Electrochem. Soc., 144, L180 (1997).   DOI
69 D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chuid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, ‘Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems’ J. Power Sources, 68, 91 (1997).   DOI
70 D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, ‘Failure and stabilization mechanisms of graphite electrodes’ J. Phys. Chem. B, 101, 2195 (1997).   DOI