Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.1.001

Perspective of Hybridization Technology for Next-Generation Solar Cells  

Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University)
Lee, Jae-Joon (Department of Applied Chemistry, Konkuk University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.1, 2010 , pp. 1-9 More about this Journal
Abstract
We are presenting an overview of a R&D trend on dye-sensitized solar cells and organic polymer solar cells, which are classified into a next-generation solar cell, and the perspective on their hybridization technology. When considering the competition with inorganic material-base solar cells, especially, these next-generation solar cells need a new hybridization technology, even though it is still at the initial stage. The fusion and hybridization of them will be not only attractive in a new application, but also promising to expect significant progresses in the near future for successful R&D.
Keywords
Solar cell; Hybridization; DSSC; Organic solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. P. Smestada, S. Spiekermann, J. Kowalik, C D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert, and E. Moons, ‘A technique to compare polythiophene solid-state dye sensitized $TiO_2$ solar cells to liquid junction devices’ Sol. Energy Mater. Sol. Cells, 76, 85 (2003).   DOI
2 E. Lancelle-Beltran, P. Prene, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, ‘All-solid-state dye-sensitized nanoporous $TiO_2$ hybrid solar cells with high energy-conversion efficiency’ Adv. Mater., 18, 2579 (2008).
3 W. U. Huyn, J. J. Dittmer, and A. P. Alivisatos, ‘Hybrid nanorod-polymer solar cells’ Science, 295, 2425 (2002).   DOI   ScienceOn
4 S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, ‘Bulk heterojunction solar cells with internal quantum efficiency approaching 100%’ Nat. Photonics, 3, 297 (2009).   DOI   ScienceOn
5 C. Yang, J. Y. Kim, S. Cho, J. K. Lee, A. J. Heeger, and F. Wudl, ‘Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors’ J. Am. Chem. Soc., 130, 6444 (2008).   DOI
6 J. K. Lee, Y. M. Wang, S. Cho, F. Wudl, and A. J. Heeger, ‘New approach for forming bulk-heterojunction solar cells comprising a $\pi$-conjugated polymer and $C_{60}$’ Org. Electro., 10, 1223 (2009).   DOI
7 Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug, and J.R. Durrant, ‘Sub picosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films’ J. Phys. Chem., 100, 20056 (1996).   DOI
8 G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, ‘A review on highly ordered, vertically oriented $TiO_2$ nanotube arrays: fabrication, material propertie, and solar energy applications’ Sol. Energy Mater. Sol. Cells, 90, 2011 (2006).   DOI
9 W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, and N. S. Sariciftci, ‘Dependence of field-effect hole mobility of PPV-based polymer films on the spin casting solvent’ Org. Electro., 3, 105 (2002).   DOI
10 H. X. Wang, B. F. Xue, Y. S. Hu, Z. X. Wang, Q. B. Meng, X. J. Huang, and L. Q. Chen, ‘Characterization of interactions among 3-hydroxypropionitrile/LiI electrolytes’  Electrochem. Solid-State Lett., 7, 302 (2004).
11 E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, ‘High open-circuit voltage photovoltaic devices from carbon nanotube-polymer composites’ J. Appl. Phys., 93, 1764 (2003).   DOI
12 S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, ‘Novel organic dyes for efficient dye-sensitized solar cells’ Chem. Commun., 26, 2792 (2006).
13 T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, ‘High efficiency of dye-sensitized solar cells based on metal-free indoline dyes’ J. Am. Chem. Soc., 126, 12218, (2004).   DOI
14 H. Choi, C. Baik, S. O. Kang, J. Ko, M. S. Kang, M. K. Nazeeruddin, and M. Gratzel ‘Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells’ Angew. Chem. Int. Ed., 47. 327 (2008).   DOI
15 W. Zhao, B. W. Zhang, Y. Cao, X. Xiao, and R. Yang, ‘Photoelectric conversion performance of nanocrystalline $TiO_2$ film electrodes modified with squarylium cyanine functional materials’ J. Funct. Mater., 30, 304 (1999).
16 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, ‘Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiol’ Nature Mater., 6, 497 (2007).   DOI
17 C. Brabeck, V. Dyakonov, and U. Scherf., Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technology, Wiley. (2008).
18 H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. Ch. Lux-Steiner, and N.S. Sariciftci, ‘Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells devices’ Thin Solid Films, 511, 587 (2006).   DOI   ScienceOn
19 X. Wu, T. A. Chen, and R. D. Rieke, ‘A study of small band gap polymers: head-to-tail regioregular poly[3-(alkylthio)-thiophenes] prepared by regioselective synthesis using active zinc’ Macromolecules, 29, 7671(1996).   DOI   ScienceOn
20 S. K. Lee, N. S. Cho, S. Cho, S. J. Moon, J. K. Lee, and G. C. Bazan, ‘Synthesis and characterization of low-bandgap cyclopentadithiophene-biselenophene copolymer and its use in field-effect transistor and polymer solar cells’ J. Poly. Sci: Part A: Poly. Chem., 47, 6873 (2009).   DOI
21 P. Wang, C. Klein, J.-E. Moser, R. Humphry-Bake, N. E. Cevey-Ha, R. charvet, P, Comte, S. M. Zakeeruddin, and M. Gratzel, ‘Amphiphilic ruthenium sensitizer with 4,4’-diphosphonic acid-2,2’-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells’ J. Phys. Chem. B., 108, 17553 (2004).   DOI
22 P. P'echy, F. P. Rotzinger, M. K. Nazeeruddin, O. Kohle, SM Zakeeruddin, R. Humphry-baker and M. Gratzel, ‘Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline $TiO_2$ films’ Chem. Commun., 65 (1995).
23 K. Hara, M. Kurashige, Y. Dan-Oh, . Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, ‘Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells’ New J. Chem., 27, 783 (2003).   DOI
24 K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, ‘A coumarin-derivative dye sensitized nanocrystalline $TiO_2$ solar cell having a high solar-energy conversion efficiency up to 5.6%’ Chem. Commun., 6, 569 (2001).   DOI
25 K. Hara, Z.-S. Wang, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, C. Kasada, A. Shinpo, and S. Suga, ‘Oligothiophene- containing coumarin dyes for efficient dye-sensitized solar cells’ J. Phys. Chem. B., 109, 15476 (2005).   DOI
26 S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, Md. K. Nazeeruddin, and M. Gratzel, ‘Molecular Engineering of Organic Sensitizers for Solar Cell Applications’ J. Am. Chem. Soc., 128, 16701 (2006).   DOI
27 N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, ‘Alkyl-functionalized organic dyes for efficient molecular photovoltaics’ J. Am. Chem. Soc., 128, 14256 (2006).   DOI
28 K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, ‘Novel polyene dyes for highly efficieny dye-sensitized solar cells’ Chem. Commun., 2, 252, (2003).
29 P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M. Gratzel, ‘Molecular-scale interface engineering of $TiO_2$ nanocrystals: improving the efficiency and stability of dye-sensitized solar cells’ Adv. Mater., 15, 2101 (2003).   DOI
30 C. Klein, M. K. Nazeeruddin, P. Liska, D. Di Censo, N. Hirata, E. Palomarses, J. R. Durrant and M. Gratzel, ‘Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity’ Inorg. Chem., 44, 178 (2005).   DOI
31 D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, ‘High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells’ J. Am. Chem. Soc., 128, 4146 (2006).   DOI
32 P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, ‘A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells’ J. Am. Chem. Soc., 127, 808 (2005).   DOI
33 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, ‘A stable quasisolid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte’ Nature Mater., 2, 402 (2003).   DOI
34 P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, MK Nazeeruddin, and M. Gratzel, ‘Stable new sensitizer with improved light harvesting for nanocrystalline dyesensitized solar cells’ Adv. Mater., 16, 1806 (2004).   DOI
35 K. -J. Jiang, N. Masaki, J.-B. Xia, S. Noda, and S. Yanagida, ‘A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells’ Chem. Commun., 23, 2460, (2006).
36 P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Gratzel, ‘A solvent-free, SeCN-/$(SeCN)_3$-Based ionic liquid electrolyte for high-efficiency dyesensitized nanocrystalline solar cells’ J. Am. Chem. Soc., 126, 7164 (2004).   DOI
37 N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, and M. Gratzel, ‘An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dyesensitized solar cells’ J. Mater. Chem., 16, 2978 (2006).   DOI   ScienceOn
38 B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, and T. Q. Nguyen, ‘Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells’ Adv. Funct. Mater., 19, 3063 (2009).   DOI
39 J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, and T. Sato, ‘An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%’ J. Am. Chem. Soc., 130, 11568 (2008).   DOI
40 H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, ‘Polymer solar cells with enhanced open-circuit voltage and efficiency’ Nat. Photonics, 3, 649 (2009).   DOI
41 J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, ‘Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance’ J. Appl. Phys., 98, 9 (2005).
42 G. R. A. Kumara, S. Kaneko, A. Konno, M. Okuya, K. Murakami, B. Onwona-agyeman, and K. Tennakone, ‘Large area dye-sensitized solar cells: material aspects of fabrication’ Prog. Photovolt: Res. Appl., 14, 643 (2006).   DOI
43 G. Rothenberger, D. Fitzmaurice, and M. Gratzel, ‘Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flat band potential of colloidal titanium dioxide films’ J. Phys. Chem., 96, 5983 (1992).   DOI
44 T. Markvart and L. Castaner, Solar Cell: materials, manufacture and operation, Elsevier (2005).
45 M. Gratzel 'Dye-sensitized solar cell' J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003).   DOI
46 F. T. Kong, S. Y. Dai, and K. J. Wang, ‘Review of recent progress in dye-sensitized solar cells’ Adv. OptoElectro., 1 (2007).
47 N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, ‘Photoinduced electron transfer from a conducting polymer to buckminsterfullerene’ Science, 258, 1474 (1992).   DOI   ScienceOn
48 B. C. Thompson and J. M. J. Frechet, ‘Polymer-fullerene composite solar cell’ Angew. Chem. Int. Ed., 46. 2 (2007).
49 S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’ Chem. Rev., 107, 1324 (2007).   DOI
50 B. O’Regan and M. Gratzel, ‘A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 film’ Nature, 353, 737 (1991).   DOI
51 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, ‘Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction’ Science, 270, 1789 (1995).   DOI
52 M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, ‘Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers’ J. Am. Chem. Soc., 127, 16835 (2005).   DOI
53 S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, ‘Highefficiency organic dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness’ Adv. Mater., 18, 1202 (2006).   DOI