Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.3.203

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery  

Choi, Nam-Soon (Corporate R&D Center, Samsung SDI Co. Ltd.)
Kim, Sung-Soo (Corporate R&D Center, Samsung SDI Co. Ltd.)
Narukawa, Satoshi (Corporate R&D Center, Samsung SDI Co. Ltd.)
Shin, Soon-Cheol (Corporate R&D Center, Samsung SDI Co. Ltd.)
Cha, Eun-Hee (College of liberal arts&Science, Hoseo University)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.3, 2009 , pp. 203-218 More about this Journal
Abstract
The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.
Keywords
Lithium-ion battery; Non-flammable electrolyte; Flame-retardant; Fluorinated organic solvent; Ionic liquid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Lewandowski, and I. St pniak, 'Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K', Phys. Chem. Chem. Phys. 5, 4215 (2003)   DOI   ScienceOn
2 A. Noda, and M. Watanabe, 'Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts', Electrochim. Acta, 45, 1265 (2000)   DOI   ScienceOn
3 H. Ohno, and K. Fukumoto, 'Progress in ionic liquids for electrochemical reactions matrices', Electrochemistry, 76(1), 16 (2008)   DOI   ScienceOn
4 W. Ogihara, M. Yoshizawa, and H. Ohno, 'Novel alkali metal ionic liquids: N-ethylimidazolium alkali metal sulfates', Chem. Lett., 9, 880 (2002)   DOI
5 H. Ohno, 'Electrochemical aspects of ionic liquids,' Wiley-Interscience, New York, (2005)
6 H. Ohno, 'Functional design of ionic liquids', Bull. Chem. Soc. Jpn., 79, 1665 (2006)   DOI   ScienceOn
7 C. Tiyapiboonchaiya, J. M. Pringle, J. Sun, N. Byrne, P. C. Howlett, D. R. Macfarlane, and M. Forsyth, 'The zwitterion effect in high-conductivity polyelectrolyte materials', Nature materials, 3, 29 (2004)   DOI   ScienceOn
8 M. C. Kroon, W. Buijs, C. J. Peters, and G. -J. Witkamp, 'Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids', Thermochim. Acta, 456(1-2), 40 (2007)   DOI   ScienceOn
9 M. Gali ski, A. Lewandowski, I. Stepniak, 'Ionic liquids as electrolytes', Electrochim. Acta, 51, 5567 (2006)   DOI   ScienceOn
10 Y. Katayama, M. Yukumoto, and T. Miura, 'Electrochemical intercalation of lithium into graphite in roomtemperature molten salt containing ethylene carbonate', Electrochem. Solid State Lett., 6, A96 (2003)   DOI   ScienceOn
11 H. Zheng, K. Jiang, T. Abe, and Z. Ogumi, 'Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes', Carbon 44, 203 (2006)   DOI   ScienceOn
12 T. Sato, T. Maruo, S. Marukane, and K. Takagi, 'Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells', J. Power sources, 138, 253 (2004)   DOI   ScienceOn
13 A. Lewandowski and A. widerska-Mocek, 'Properties of the graphite-lithium anode in N-methyl-Npropylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte', J. Power sources, 171, 938 (2007)   DOI   ScienceOn
14 H. Sakaebe and H. Matsumoto, 'N-Methyl-N-propylpiperidinium bis(trifluoro-methanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery', Electrochem. Commun., 5, 594 (2003)   DOI   ScienceOn
15 H. Matsumoto, T. Matsuda, and Y. Miyazaki, 'Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide', Chem. Lett., 1430, (2000)
16 R. Hagiwara, T. Hirashige, T. Tsuda, and Y. Ito, 'Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid', J. Fluorine Chem., 99, 1 (1999)   DOI   ScienceOn
17 J. Fuller, R. T. Carlin, H. C. De Long, and D. Haworth, 'Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts', J. Chem. Soc. Chem. Commun., 299, (1994)   DOI   ScienceOn
18 G. S. Owens and M. M. Abu-Omar, 'Comparative kinetic investigations in ionic liquids using the MTO/peroxide system', J. Mol. Cat A: Chem., 187, 215 (2002)   DOI   ScienceOn
19 H. Sakaebe, H. Matsumoto, and K. Tatsumi, 'Application of room temperature ionic liquids to Li batteries', Electrochim. Acta, 53(3), 1048 (2007)   DOI   ScienceOn
20 H. Matsumoto, H. Kageyama, and Y. Miyazaki, 'Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions, Chem. Commun., 1726, (2002)   DOI   ScienceOn
21 H. Matsumoto, H. Sakaebe, and K. Tatsumi, 'Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte', J. Power Sources, 146(1-2), 45 (2005)   DOI   ScienceOn
22 Z.-B. Zhou, H. Matsumoto, and K. Tatsumi, 'Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates', ChemPhysChem, 6(7), 1324 (2005)   DOI   ScienceOn
23 J. Fuller, A. C. Bread and R. T. Carlin, 'Ionic liquidpolymer gel electrolytes from hydrophilic and hydrophobic ionic liquids', J. Electroanal Chem., 459, 29 (1998)   DOI   ScienceOn
24 Y. Wang, K. Zaghib, A. Guerfi, F.C. Bazito, R. M. Torresi, and J. R. Dahn, 'Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials', Electrochim. Acta, 52(22), 6346 (2007)   DOI   ScienceOn
25 S. Carda-Broch, A. Berthod, and A.W. Armstrong, 'Solvent Properties of 1-butyl-3-methyl-imidazolium Hexafluorophosphate Ionic Liquid', Anal. Bioanal. Chem., 375, 191 (2003)   DOI   ScienceOn
26 C. Nanjundiah, S. F. McDevitt, and V. R. Koch, 'Differential Capacitance Measurements in Solvent-Free Ionic Liquids at Hg and C Interfaces', J. Electrochem. Soc., 144, 3392 (1997)   DOI   ScienceOn
27 A. B. McEwen, H. L. Ngo, K. Le Compte, and X. L. Goldman, 'Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications', J. Electrochem. Soc., 146, 1687 (1999)   DOI   ScienceOn
28 D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, and G. B. Deacon, 'Low viscosity ionic liquids based on organic salts of the dicyanamide anion', Chem. Commun., 1430 (2001)   DOI   ScienceOn
29 J. N. Barisci, G. G. Walace, D. R. MacFarlane, and R. H. Baughman, 'Investigation of ionic liquids as electrolytes for carbon nanotube electrodes', Electrochem. Commun., 6, 22 (2004)   DOI   ScienceOn
30 D. R. MacFarlane, J. Sun, J. Golding, P. Meakin, and M. Forsyth, 'High conductivity molten salts based on the imide ion', Electrochim. Acta, 45, 1271 (2000)   DOI   ScienceOn
31 K. Yokoyama, T. Sasano, and A. Hiwara, U.S. Patent 6,010,806 (2000)
32 J. Sun, M. Forsyth, and D. R. MacFarlane, 'Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion', J. Phys. Chem. B, 102, 8858 (1998)   DOI   ScienceOn
33 R. McMillan, H. Slegr, Z. X. Shu, and W. Wang, 'Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes' J. Power Sources, 81-82, 20 (1999)   DOI   ScienceOn
34 I. A. Profatilova, N. -S. Choi, S. W. Roh, and S. S. Kim 'Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids', J. Power Sources, 192(2) 636 (2009)   DOI   ScienceOn
35 J. Arai, 'A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary atteries', J. Appl. Electrochem. 32, 1071 (2002)   DOI   ScienceOn
36 J. Arai, 'No-flash-point electrolytes applied to amorphous carbon/$Li_{1+x}Mn_{2}O_{4}$ cells for EV use', J. Power Sources 119-121, 388 (2003)   DOI   ScienceOn
37 J. Arai, 'Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries', J. Electrochem. Soc., 150, A219 (2003)   DOI   ScienceOn
38 Y. Sasaki, 'Organic electrolytes of secondary lithium batteries', Electrochemistry, 76(1), 2 (2008)   DOI   ScienceOn
39 M. Morita, T. Kawasaki, N. Yoshimoto, M. Ishikawa, 'Nonflammable organic electrolyte solution based on perfluoro-ether solvent for lithium ion batteries', Electrochemistry, 71, 1067 (2003)   ScienceOn
40 P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, 'Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts', Inorg. Chem., 35, 1168 (1996)   DOI   ScienceOn
41 C. W. Lee and R. Venkatachalapathy J. Prakash, 'A novel flame-retardant additive for lithium batteries', Electrochem. Solid-State Lett., 3, 63 (2000)   DOI   ScienceOn
42 S. S. Zhang, K. Xu, and T. R. Jow, 'Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries', J. Power Sources, 113, 166 (2003)   DOI   ScienceOn
43 X. L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, J. Power Sources, 144, 170 (2005)   DOI   ScienceOn
44 D. D. MacNeil, L. Christensen, J. Landucci, J. M. Paulsen, and J. R. Dahn, 'An Autocatalytic Mechanism for the Reaction of $Li_{x}CoO_{2}$ in Electrolyte at Elevated Temperature', J. Electrochem. Soc., 147(3), 970 (2000)   DOI   ScienceOn
45 D. D. MacNeila and J. R. Dahn, 'Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?', J. Electrochem. Soc., 150, A21 (2003)   DOI   ScienceOn
46 M. Ihara, B. T. Hang, K. Sato, M. Egashira, S. Okada, and J.-I. Yamaki, 'Properties of carbon anodes and thermal stability in $LiPF_{6}$/methyl difluoroacetate electrolyte' J. Electrochem. Soc., 150(11), A1476 (2003)   DOI   ScienceOn
47 Q. Zhang, H. Noguchi, H. Wang, M. Yoshio, M. Otsuki, and T. Ogino, 'Improved thermal stability of $LiCoO_{2}$ by cyclotriphosphazene additives in lithium-ion batteries', Chem. Lett., 34(7), 1012 (2005)   DOI   ScienceOn
48 X. Wang, E. Yasukawa, and S. Kasuya, 'Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The Use of an amorphous carbon anode', J. Electrochem. Soc. 148, A1066 (2001)   DOI   ScienceOn
49 M. Kobayashi, T. Inoguchi, T. Iida, T. Tanioka, H. Kumase, and Y. Fukai, 'Development of direct fluorination technology for application to materials for lithium battery', J. Fluorine Chem. 120, 105 (2003)   DOI   ScienceOn
50 X. Wang, E. Yasukawa, and S. Kasuya, 'Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental Properties', J. Electrochem. Soc. 148, A1058 (2001)   DOI   ScienceOn
51 K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, and T. R. Jow, 'An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes',J. Electrochem. Soc. 149, A622 (2002)   DOI   ScienceOn
52 J. W. Hastie, 'Molecular-basis of flame inhibition', J Res Natl Bur Stand Sec A Phys Chem., 77A, 733 (1973)   DOI
53 K. Xu, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate', J. Electrochem. Soc., 149, A1079 (2002)   DOI   ScienceOn
54 K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. Physical and electrochemical properties', J. Electrochem. Soc., 150, A161 (2003)   DOI   ScienceOn
55 K. Xu, S. S. Zhang, J. L. Allen, and T. R. Jow, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell', J. Electrochem. Soc., 150, A170 (2003)   DOI   ScienceOn
56 K. -C. Moller, T. Hodal, W. K. Appel, and M. Winter, J. O. Besenhard, 'Fluorinated organic solvents in electrolytes for lithium ion cells', J. Power Sources, 97-98, 595 (2001)   DOI   ScienceOn
57 M. S. Ding, K. Xu, and T.R. Jow, 'Effects of tris(2,2,2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in ECPC-EMC of 3 : 3 : 4 weight ratios', J. Electrochem. Soc., 149, A1489 (2002)   DOI   ScienceOn
58 P. G. Balakrishnan, R. Ramesh, and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries', J. Power Sources, 155, 401-414 (2006)   DOI   ScienceOn
59 N. -S. Choi, I. A. Profatilova, S. -S. Kim, and E. -H. Song, 'Thermal reactions of lithiated graphite anode in LiPF6-based electrolyte', Thermochim. Acta, 480(1-2), 10-14 (2008)   DOI   ScienceOn
60 K. Xu, S. Zhang, J. L. Allen, and T. R. Jow, 'Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate', J. Electrochem. Soc., 149, A1079 (2002)   DOI   ScienceOn
61 L.Wu, Z. Song, L. iu, X. Guo, L. Kong, H. Zhan, Y. Zhou, and Z. Li, 'A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries', J. Power Sources, 188(2), 570 (2009)   DOI   ScienceOn
62 K. Xu, M.S. Ding, S. Zhang, J. L. Allen, and T. R. Jow, 'An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes', J. Electrochem. Soc., 149(5), A622 (2002)   DOI   ScienceOn