Browse > Article
http://dx.doi.org/10.5229/JKES.2008.11.3.147

Enhancement in Selectivity of Nonenzymatic Glucose Sensors Based on Mesoporous Platinum by A.C. Impedance  

Park, Se-Jin (Basic Science Research Institute, Sungshin Women's University)
Boo, Han-Kil (The Cooperative Center for Nano-Bio Applied Technology, Sungshin Women's University)
Publication Information
Journal of the Korean Electrochemical Society / v.11, no.3, 2008 , pp. 147-153 More about this Journal
Abstract
Improvement of the selectivity of nonenzymatic glucose based on mesoporous platinum ($H_1$-ePt) by using A.C. impedance is reported. The idea of the present work is based on the novel effect of the mesoporous electrode that the apparent exchange current due to glucose oxidation remarkably grows although the reaction kinetics on the surface is still sluggish. It is expected that the enlarged apparent exchange current on the mesoporous electrode can raise the sensitivity of admittance in A.C. impedance to glucose concentration. At a low frequency, A.C. impedance could become more powerful. The admittance at 0.01 Hz is even more sensitive to glucose than to ascorbic acid while amperometry exhibits the inverse order of sensitivity. This is the unique behavior that is neither observed by A.C. impedance on flat platinum electrode nor obtained by amperometry. The study shows how the combination of A.C. impedance and nano-structured surface can be applied to the detection of sluggish reaction such as electrochemical oxidation of glucose.
Keywords
Impedance; Mesoporous platinum; Nonenzymatic glucose sensor; Nano-structured surface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Iyengar and E. A. H. Hall, "Applying immittance spectroscopy to monitoring hydrogen peroxide in the presence of ascorbic acid. Part I: Theoretical considerations" Electroanalysis, 13, 437 (2001)   DOI   ScienceOn
2 J. M. Elliott and J. R. Owen, "Electrochemical impedance characterisation of a nanostructured (mesoporous) platinum film" Phys. Chem. Chem. Phys., 2, 5653 (2000)   DOI
3 G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, "Mesoporous platinum films from lyotropic liquid crystalline phases " Science, 278, 838 (1997)   DOI   ScienceOn
4 J. M. Elliott, P. R. Birkin, P. N. Bartlett, and G. S. Attard, "Platinum Microelectrodes with Unique High Surface Areas" Langmuir, 15, 7411 (1999)   DOI   ScienceOn
5 S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature" Electrochim. Acta, 44, 2455 (1999)   DOI   ScienceOn
6 P. Karabinas and D. Jannakoudakis, "Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions" J. Electroanal. Chem., 160, 159 (1984)   DOI   ScienceOn
7 S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential" Electrochim. Acta, 43, 2015 (1998)   DOI   ScienceOn
8 J. J. Jiang and A. Kucernak, "Oxygen reduction studies of templated mesoporous platinum catalysts" Electrochemical and Solid State Letters, 3, 559 (2000)   DOI   ScienceOn
9 J. Jiang and A. Kucernak, "Electrooxidation of small organic molecules on mesoporous on precious metal catalysts I: CO and methanol on platinum" J. Electroanal. Chem., 533, 153 (2002)   DOI   ScienceOn
10 S. Iyengar, E. A. H. Hall, N. G. Skinner, and J. J. Gooding, "Frequency domain selection of the peroxide signal for amperometric biosensors" Electroanalysis, 10, 1089 (1998)   DOI   ScienceOn
11 S. Iyengar and E. A. H. Hall, "Selective monitoring of the hydrogen peroxide signal in the presence of ascorbic acid. Part II: Preliminary practical realization of applying immittance spectroscopy" Electroanalysis, 13, 517 (2001)   DOI   ScienceOn
12 G. Kokkinidis and N. Xonoglou, "Comparative study of the electrocatalytic influence of underpotential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions" Bioelectrochem. Bioener., 14, 375 (1985)   DOI   ScienceOn
13 S. Arimori, S. Ushiroda, L. M. Peter, A. T. A. Jenkins, and T. D. James, "A modular electrochemical sensor for saccharides" Chem. Commun., 2368 (2002)
14 Y. Sun, H. Buck, and T. E. Mallouk, "Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors" Anal. Chem., 73, 1599 (2001)   DOI   ScienceOn
15 X. Zhang, K.-Y. Chan, J.-K. You, Z.-G. Lin, and A. C. C. Tseung, "Partial oxidation of glucose by a $PtWO_{3}$ electrode" J. Electroanal. Chem., 430, 147 (1997)   DOI   ScienceOn
16 S.-J. Choi, B.-G. Choi, and S.-M. Park, "Electrochemical Sensor for Electrochemically Inactive -D(+)-Glucose Using -Cyclodextrin Template Molecules " Anal. Chem., 74, 1998 (2002)   DOI   ScienceOn
17 G. S. Attard, M. Edgar, and C. G. Goeltner, "Inorganic nanostructures from lyotropic liquid crystal phases" Acta Mater., 46, 751 (1998)   DOI   ScienceOn
18 P. R. Birkin, J. M. Elliott, and Y. E. Watson, "Electrochemical reduction of oxygen on mesoporous platinum microelectrodes" Chem. Commun., 1693 (2000)
19 A. J. Bard and L. R. Faulkner, "Electrochemical methods: Fundamentals and Applications", Wiley, New York (2001)
20 G. S. Attard, J. C. Glyde, and C. G. Goeltner, "Liquidcrystalline phases as templates for the synthesis of mesoporous silica" Nature, 378, 366 (1995)   DOI
21 J. M. Elliott, G. S. Attard, P. N. Bartlett, N. R. B. Coleman, D. A. S. Merckel, and J. R. Owen, "Nanostructured Platinum (HI-ePt) Films: Effects of Electrodeposition Conditions on Film Properties" Chem. Mater., 11, 3602 (1999)   DOI   ScienceOn
22 B. Beden, F. Largeaud, K. B. Kokoh, and C. Lamy, "Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of -glucose: Identification of reactive intermediates and reaction products" Electrochim. Acta, 41, 701 (1996)   DOI   ScienceOn
23 Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, "kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum" J. Electroanal. Chem., 196, 105 (1985)   DOI   ScienceOn
24 M. Brezina, J. Koryta, T. Loucka, D. Marsikova, and J. Pradac, "Adsorption and kinetics of oxidation of ascorbic acid at platinum electrodes" J. Electroanal. Chem., 40, 13 (1972)   DOI   ScienceOn
25 S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism" Electrochim. Acta, 43, 579 (1998)   DOI   ScienceOn
26 S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence" Electrochim. Acta, 44, 4573 (1999)   DOI   ScienceOn
27 S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride" Electrochim. Acta, 45, 3573 (2000)   DOI   ScienceOn
28 G. S. Attard, C. G. Goeltner, J. M. Corker, S. Henke, and R. H. Templer, "Liquid-crystal templates for nanostructured metals" Angew. Chem. Int. Ed., 36, 1315 (1997)   DOI   ScienceOn
29 S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, and G. Denuault, "Detection of hydrogen peroxide at mesoporous platinum microelectrodes" Anal. Chem., 74, 1322 (2002)   DOI   ScienceOn
30 G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J.M. Elliott, and J. R. Owen, "Lyotropic Liquid Crystalline Properties of Nonionic Surfactant/H2O/Hexachloroplatinic Acid Ternary Mixtures Used for the Production of Nanostructured Platinum" Langmuir, 14, 7340 (1998)   DOI   ScienceOn
31 P. N. Bartlett and S. Guerin, "A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases" Anal. Chem., 75, 126 (2003)   DOI   ScienceOn
32 J. Jiang and A. Kucernak, "Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid" J. Electroanal. Chem., 520, 64 (2002)   DOI   ScienceOn
33 S. Iyengar and E. A. H. Hall, "Data from overlapping signals at an amperometric electrode using admittance vectors" J. Electroanal. Chem., 521, 61 (2002)   DOI   ScienceOn
34 K. B. Kokoh, F. Hahn, A. Metayer, and C. Lamy, "FTIR spectroelectrochemical investigation of the electrocatalytic oxidation of ascorbic acid at platinum electrodes in acid medium" Electrochim. Acta, 47, 3965 (2002)   DOI   ScienceOn
35 S. Park, T. D. Chung, and H. C. Kim, "Nonenzymatic glucose detection using mesoporous platinum" Anal. Chem., 75, 3046 (2003)   DOI   ScienceOn
36 I. T. Bae, E. Yeager, X. Xing, and C. C. Liu, "In situ infrared studies of glucose oxidation on platinum in an alkaline medium" J. Electroanal. Chem., 309, 131 (1991)   DOI   ScienceOn
37 M. Sakamoto and K. Takamura, "Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose" Bioelectrochem. Bioener., 9, 571 (1982)   DOI   ScienceOn
38 G. Wittstock, A. Strubing, R. Szargan, and G. Werner, "Glucose oxidation at bismuth-modified platinum electrodes" J. Electroanal. Chem., 444, 61 (1998)   DOI   ScienceOn
39 E. Shoji, and M. S. Freund, "Potentiometric Sensors Based on the Inductive Effect on the pKa of Poly(aniline): A Nonenzymatic Glucose Sensor" J. Am. Chem. Soc., 123, 3383 (2001)   DOI   ScienceOn
40 E. Shoji and M. S. Freund, "Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid)" J. Am. Chem. Soc., 124, 12486 (2002)   DOI   ScienceOn
41 B. Gollas, J. M. Elliott, and P. N. Bartlett, "Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10MHz" Electrochim. Acta, 45, 3711 (2000)   DOI   ScienceOn