Browse > Article
http://dx.doi.org/10.5229/JKES.2007.10.4.239

Synthesis and Electrochemical Properties of Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15)) Cathode Materials by Anion Substitution  

Heo, J.B. (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University)
Park, G.J. (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University)
Lee, Y.S. (Faculty of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University)
Publication Information
Journal of the Korean Electrochemical Society / v.10, no.4, 2007 , pp. 239-244 More about this Journal
Abstract
In order to investigate the effect of fluorine ion in the $Li_{1-x}FeO_2Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8) cathode material, it was synthesized $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.05{\le}y{\le}0.15$) cathode materials at $350^{\circ}C$ for 10hrs using solid-state method. $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.0{\le}y{\le}0.1$ was composed many large needle-like particles of about $1-1.5\;{\mu}m$ and small particles of about 50-100 nm, which were distributed among the larger particles. However, $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ material showed slightly different particle morphology. The particles of $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ were suddenly increased and started to be a spherical type of particle shape. $Li/Li_{1-x}FeO_{1.9}F_{0.1}-Li_xMnO_2$ cell showed a high initial discharge capacity of 163 mAh/g and a high cycle retention rate of 95% after 50 cycles. The initial discharge capacity of $Li/Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ ($0.05{\le}y{\le}0.15$) cells increased according to the increase of F content. However, the cycleability of this cell was very rapidly decreased when the substituted fluorine content is over 0.1. We suggested that too large amount of F ion fail to substitute into the $Li_{1-x}FeO_2-Li_xMnO_2$ structure, which resulted in the severe decline of battery performance.
Keywords
$Li_{1-x}FeO_2-Li_xMnO_2$; $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$; Anion substitution; Cathode material; Lithium secondary battery;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. S. Lee, S. Sato, Y. K. Sun, K. Kobayakawa, and Y. Sato, 'Preparation of Mn-substituted $LiFeO_2$ : A solid solution of $LiFeO_2$ and $Li_xMnO_2$', Electrochem. Commun., 5, 359 (2003)   DOI   ScienceOn
2 G. J. Park, Y S. Lee, K. S. Nahm, and Y. Sato, 'Synthesis and Electrochemical Properties of $Li_{1-x}Fe_{0.8}Ni_{0.2}O_2-Li_xMnO_2$ (Mn/ (Fe + Ni + Mn) = 0.8) Material', J. Power Sources in Press
3 Y.-J. Kang, J.-H. Kim and Y.-K. Sun, 'Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries', J. Power Sources, 146, 237 (2005)   DOI   ScienceOn
4 Yun-Sung Lee, Sung-Jun Cho, and Masaki Yoshio, 'Preparation and Electrochemical Properties of $Li_{1.1}Mn_2O_{3.9}F_{0.1}$ Material for Lithium Secondary Battery', Korean Journal of Chemical Engineering, 23(4), 566 (2006)   DOI
5 G. G. Amatucci, N. Pereira, T. Zheng, and J.M. Tarascon, 'Failure Mechanism and Improvement of the Elevated Temperature Cycling of $LiMn_2O_4$ Compounds Through the Use of the $LiAl_xMn_{2-x}O_{4-z}F_z$ Solid Solution', J. Electrochem. Soc., 148, A171 (2001)   DOI   ScienceOn
6 Tsutomu Ohzuku, Atsushi Ueda, Masatoshi Nagayama, Yasunobu Iwakoshi, and Hideki Komori, 'Comparative study of $LiCoO_2$, $LiNi_{1/2}Co_{1/2}O_2$ and $LiNiO_2$ for 4 volt secondary lithium cells', Electrochimica Acta, 38, 1159 (1993)   DOI   ScienceOn
7 Y. Sakurai, H. Arai, and J. Yamaki, 'Preparation of electrochemically active ${\alpha}-LiFeO_2$ at low temperature', Solid State Ionics, 113-115, 29 (1998)
8 J. N. Reimers, and J.R. Dahn, 'Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in $Li_xCoO_2$', J. Electrochem. Soc, 139, 2091, 62 (1992)   DOI
9 G G Amatucci, J.M. Tarascon, and L.C. Klein 'Cobalt dissolution in $LiCoO_2-based$ non-aqueous rechargeable batteries', Solid state Ionics, 83, 167 (1996)   DOI   ScienceOn
10 J. C. Anderson and M. Schieber, 'Order-disorder transitions in heat-treated rock-salt Lithium Ferrite' J. Phys. Chem. Solids, 25, 961 (1962)   DOI   ScienceOn
11 C. Barriga, V. Barron, R. Gancedo, M. Gracia, J. Morales, J.L. Tirado and J. Torrent, 'Lithium ferrite formation by precipitation from Fe(ni) solutions', Solid State Chem, 77, 132 (1988)   DOI   ScienceOn
12 J. C. Anderson, S. K. Dey, and V. Halpen, 'The magnetic susceptibilities of $LiFeO_2$', J. Phys. Chem. solids, 26, 1555 (1965)   DOI   ScienceOn
13 T. Matsumura, R. Kanno, Y. Inaba, Y. Kawamoto, and M. Takano, 'Synthesis, Structure, and Electrochemical Properties of a New Cathode Material, $LiFeO_2$, with a Tunnel Structure', J. Electrochem. Soc., 149, 1509 (2002)   DOI   ScienceOn
14 R. Kanno, T. Shirane, Y Kawamoto, Y. Takeda, M. Takano, M. Ohashi, and Y Yamaguchi, 'Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, $LiFeO_2$, with a Corrugated Layer Structure', J. Electrochem. Soc, 143, 2435 (1996)
15 Y. Sakurai, H. Arai, S. Okada, and J. Yamaki, 'Low temperature synthesis and electrochemical characteristics of $LiFeO_2$cathodes', J. Power Sources, 68, 711 (1997)   DOI   ScienceOn
16 Y. S. Lee, C. S. Yoon, Y K. Sun, K. Kobayakawa, and Y. Sato, 'Synthesis of nano-crystalline $LiFeO_2$ material with advanced battery performance', Electrochem. commun., 4, 727 (2002)   DOI   ScienceOn
17 K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, '$Li_xCoO_2$ (0   DOI   ScienceOn