Browse > Article
http://dx.doi.org/10.5229/JKES.2006.9.2.077

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell  

Lee C.G. (Dept. of Chemical Engineering, Hanbat National University)
Kim D.H. (Korea Electric Power Research Institute)
Hong S.W. (Dept. of Chemical Engineering, Hanbat National University)
Park S.H. (Dept. of Chemical Engineering, Hanbat National University)
Lim H.C. (Korea Electric Power Research Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.9, no.2, 2006 , pp. 77-83 More about this Journal
Abstract
Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.
Keywords
MCFC; Anode; Gas composition; Overpotential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-G. Lee, H. Nakano, T. Nishina, I. Uchida, Y. Izaki, and S. Kuroe, Denki Kagaku, 64, 486 (1996)
2 H. Morita, H. Nakano, Y. Mugikura, Y. lzaki, T. Watanabe, and I. Uchida, J. Electrochem. Soc., 150, A1693 (2003)   DOI   ScienceOn
3 E. L. Cussler, Diffusion, mass transfer in fluid systems, 2nd Ed., Cambridge University Press (1997)
4 J. R. Selman, in Fuel Cell Systems, Eds. L. J. M. J. Blomen and M. N. Mugerwa, Plenum Press, NY (1993)
5 F. Yoshiba, Y. Mugikura, Y. Izaki, and T. Watanabe, in Proceedings of 10th Fuel Cell Symposium, B9, FCDIC, Tokyo (2003)
6 P. G. P. Ang and A. F. Sammells, J. Electrochem. Soc., 127, 1289 (1980)
7 C. Y. Yuh and J. R. Selman, J. Electrochem. Soc., 138, 3642 (1991)
8 H. Morita, Y. Mugikura, Y. lzaki, T. Watanabe, and T. Abe, Denki Kagaku, 65, 740 (1997)
9 G. Lindbergh, M. Olivry, and M. Sparr, J. Electrochem. Soc., 148, A411 (2001)
10 C.-G. Lee, B.-S. Kang, H.-K. Seo and H.-C. Lim, J. Electroanal. Chem., 540, 169 (2003)   DOI   ScienceOn
11 C.-G. Lee, H.-C. Lim, and J.-M. Oh, J. Electroanal. Chem., 560, 1 (2003)   DOI   ScienceOn
12 C.-G. Lee and H.-C. Lim, J. Electrochem. Soc., 152, A219 (2005)   DOI   ScienceOn
13 J. R. Selman and H. C. Maru, in Advances in Molten Salt Chemistry, Vol. 4, G. Mamantov and J. Braunstein, Ed., p.159, Plenum Press, New York (1981)
14 C.-G. Lee, H.-K. Ahn, K.-S. Ahn, and H.-C. Lim, J. Electroanal. Chem., 568, 13 (2004)   DOI   ScienceOn