Browse > Article
http://dx.doi.org/10.5229/JKES.2005.8.2.088

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell  

Song, Rak-Hyun (Advanced Fuel Cell Research Center, Hydrogen Fuel Cells Research Department, Korea Institute of Energy Research)
Publication Information
Journal of the Korean Electrochemical Society / v.8, no.2, 2005 , pp. 88-93 More about this Journal
Abstract
Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.
Keywords
Anode-supported SOFC; Cathode structure; Impedance; Cell performance.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Yokokawa and T. Horita, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Eds. S. C. Singhal and K. Kendall, Elsevier, pp 119-147 (2003)
2 K. Huang, M. Feng and J.B. Goodenourh, 'Synthesis and Electrical Properties of Dense $Ce_{0.9}Gd_{0.1}O_{1.95}$ Ceramics,' J. Am. Ceram. Soc., 81, 357-362 (1998)   DOI   ScienceOn
3 J. H. Choi, J. H. Jang, S. M. Oh, 'Microstructure and cathodic performance of $La_{0.9}Sr_{0.1}MnO_3$/yttria-stabilized zirconia composite electrodes,' Electrochimica Acta, 46(6), 867-874 (2000)   DOI   ScienceOn
4 J. D. Kim, G D. Kim, and Ki-Tae Lee, 'Oxygen Reduction Mechanism and Electrode Properties of (La, Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part II : Electrode Properties),' J. Kor. Cerm. Soc., 38(1), 93-99 (2001)   과학기술학회마을
5 A. Mineshige, J. lzutsu, M. Nakamura, K. Nigaki, J. Abe, M. Kobune, S. Fujii, T. Yazawa, 'Introduction of A-site deficiency into $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$.' and its effect on structure and conductivity,' Solid State Ionics, 176, 1145-49 (2005)   DOI   ScienceOn
6 W. G Wang, M. Mogensen, 'High-performance lanthanum-ferritebased cathode for SOFC,' Solid State Ionics, 176,457-462 (2005)   DOI   ScienceOn
7 A. Esquirol, N. P. Brandon, J. A. Kilner, and M. Mogensen, 'Electrochemical Characterization of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Cathodes for Intermediate-Temperature SOFCs,' J. Electrochem. Soc., 151(11), A1847-A1855 (2004)   DOI   ScienceOn
8 F. W. Poulsen, and N. van der Puil, 'Phase relations and conductivity of Sr- and La-zirconates,' Solid State lonics, 53-56, 777-783 (1992)   DOI   ScienceOn
9 E. Maguire, B. Gharbage, F. M. B. Marques, and J. A. Labrincha, 'Cathode materials for intermediate temperature SOFCs,' Solid State Ionics, 127, 329-335 (2000)   DOI   ScienceOn
10 C. C. Chen, M .M. Nasrallah, H. U. Anderson, and M.A. Alim, 'Immittance Response of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Based Electrochemical Cells,' J. Electrochem. Soc., 142(2),491-496 (1995)   DOI   ScienceOn
11 J. W. Stevenson, T. R. Armstrong, R. D. Cameim, L. R. Pederson, W. J. Weber, 'Electrochemical Properties of Mixed Conducting Perovskites $La_{1-x}M_xCo_{1-y}Fe_yO_{3-{\delta}}$(M=Sc,Ba,Ca),' J. Electrochem. Soc., 143(9), 2722-2730 (1996)   DOI   ScienceOn
12 T. Iwata, 'Characterization of Ni-YSZ Anode Degradation for Substrate-Type Solid Oxide Fuel Cells,' J. Electrochem. Soc., 143(5), 1521-1525 (1996)   DOI   ScienceOn
13 Y. C. Hsiao and J. R. Selman, 'The degradation of SOFC electrodes,' Solid State lonics, 98, 33-38 (1997)   DOI   ScienceOn
14 M. J. L. Stergard, C. Clausen, C. Bagger and M. Mogensen, 'Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition,' Electrochimica Acta, 40(12), 1971-1981 (1995)   DOI   ScienceOn
15 C. Clausen, C. Bagger, J. B. Bilde-Sensen, and A. Horsewell, 'Microstructural and microchemical characterization of the interface between $La_{0.85}Sr_{0.15}MnO_3$ and Y_2O_3-stabilized $ZrO_2$,' Solid State lonics, 70-71, 59-64 (1994)   DOI   ScienceOn
16 J. D. Kim, G D. Kim, and Ki-Tae Lee, 'Oxygen Reduction Mechanism and Electrode Properties of (La, Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I : Oxygen Reduction Mechanism),' J. Kor. Cerm. Soc., 38(1), 84-92 (2001)   과학기술학회마을
17 T. Kenjo and M. Nishiya, '$LaMnO_3$ air cathodes containing $ZrO_2$ electrolyte for high temperature solid oxide fuel cells,' Solid State lonics, 57, 295-302 (1992)   DOI   ScienceOn
18 E. Siebert, A. Hammouche, and M. Kleitz, 'Impedance spectroscopy analysis of $La_{1-x}Sr_xMnO_3$-yttria-stabilized zirconia electrode kinetics,' Electrochimica Acta, 40(11), 1741-1753 (1995)   DOI   ScienceOn
19 M. J. J.ogensen, S. Primdahl, C. Bagger and M. Mogensen, 'Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes,' Solid State lonics, 139 1-11 (2001)   DOI   ScienceOn
20 J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, Fuel Cell Hand Book(DOE/FETC-99/1076), National Technical Information Service (1998)
21 N. Q. Minh and Takehiko, 'Science and Technology of Ceramic Fuel Cell', Elsevier Science (1995)
22 R.-H. Song, T. Horita, N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, 'Fabrication of Planar Solid Oxide Fuel Cell by Composite Plate Process,' Denki Kagaku, 64, 614-19 (1996)