Browse > Article
http://dx.doi.org/10.5229/JKES.2004.7.2.083

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure  

Quan De (Department of Chemistry, Sogang University)
Shin Woonsup (Department of Chemistry, Sogang University)
Publication Information
Journal of the Korean Electrochemical Society / v.7, no.2, 2004 , pp. 83-88 More about this Journal
Abstract
[ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.
Keywords
Laccase; Amerometric biosensor; Catechol derivatives; 2-Amino-4-chlorophenol; Substrate recycling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Kim, N. Cho, T. Eom and W. Shin, Bull. Korean Chem. Soc., 23, 985 (2002)   DOI   ScienceOn
2 F. Xu, W. Shin, S. H. Brown, J. Wahleithner, U. M. Sundaram and E. I. Solomon, Biochim. Biophys. Acta, 1292, 303 (1996)   DOI   ScienceOn
3 J. R. Lenhard and R. W. Murray, J. Electroanal. Chem., 78, 195 (1977)   DOI   ScienceOn
4 W. G. C. Forsyth, V. C. Quesnel, J. B. Roberts, Biochim. Biophys. Acta, 37(2), 322 (1960)   DOI   ScienceOn
5 C. R. Dawson, and W. B. Tarpley, Ann. N. Y. Acad. Sci., 100(Pt. 2), 937 (1963)   DOI
6 Y. Sun, H. Cui, Y. Li and X. Lin, Talanta, 53, 661 (2000)   DOI   ScienceOn
7 A. L. Ghindilis, V. P. Gavrilova and A. I. Yaropolov, Biosens. Bioelectron., 7, 127 (1992)   DOI   ScienceOn
8 F. Lisdat, U. Wollenberger, A. Markower, H. Hortnagl, D. Pfeiffer and F. W. Scheller, Biosens. Bioelectron., 12(12), 1199 (1997)   DOI   ScienceOn
9 B Haghighi, L. Gorton, T. Ruzgas and L. J. Jonsson, Anal. Chim. Acta, 487, 3 (2003)   DOI   ScienceOn
10 F. Lisdat, W. O. Ho, U. Wollenberger, F. W. Scheller, T. Richter and U. Billitewski, Electroanaiysis, 10(12), 803 (1998)   DOI
11 A. Lindgren, L. Stoica, T. Ruzgas, A. Ciucu and L. Gorton, Analyst, 124, 527 (1999)   DOI   ScienceOn
12 G. Marko-Varga, J. Emneus, L. Gorton and T, Ruzgas, Trends Anal. Chem., 14(7), (1995) 319   DOI   ScienceOn
13 S. Zhao and J. H. T. Luong, Anal. Chim. Acta, 327, 235 (1996)   DOI   ScienceOn
14 C. Saby and J. H. T. Luong, Electroanalysis, 10(1), 7 (1998)   DOI   ScienceOn
15 H. G. Viehe, Z. Janousek, R. Merenyi and L. Stella, Ace. Chem. Res., 18, 148(1985)   DOI
16 R. Z. Kazandjian and A. M. Klibanov, J. Am. Chem. Soc., 107, 5448 (1985)   DOI
17 J. Davis, D. H. Vaughan and M. F. Cardosi, Electrochim. Acta, 43(3-4), 291 (1998)   DOI   ScienceOn
18 S. Kobayashi and H. Higashimura, Prog. Polym. Sci., 28, 1015 (2003)   DOI   ScienceOn
19 W. P. Price, Jr., R. Edens, D. L. Hendrix and S. N. Deming, Anal. Biochem., 93, 233 (1979)   DOI   ScienceOn
20 T. Ishimitsu, S. Hirose and H. Sakurai, Talanta, 24, 555 (1977)   DOI   ScienceOn
21 V. Ducros, A. M. Brzozowski, K. S. Wilson, S. H. Brown, P. Ostergaard, P. Schneider, D. S. Yaver, A. H. Pedersen and G. J. Davis, Nature struct Bioi., 5(4), 310 (1998)   DOI   ScienceOn
22 V. D. Parker, Anodic oxidation of Amines, in: M. M. Baizer (Ed), Organic Electrochemistry-An Introduction and a Guide, Chap. 14, Marcel Dekker, Inc., New York (1973)
23 S. Campuzano, B. Serra, M. Pedrero, F. J. Manuel de Villena and J. M. Pingarron, Anal. Chim. Acta, 494, 187 (2003)   DOI   ScienceOn
24 J. M. Vandenbelt, C. Henrich and S. G. Vandenberg, Anal. Chem., 25(4), 726 (1954)
25 E. I. Solomon, U. M. Sundaram and T. E. Machonkin, Chem. Rev., 96, 2563 (1996)   DOI   ScienceOn
26 D. C. Harris, Quantitative chemical analysis, 5th Ed., AP 15, W. H. Freeman and Company, New York (1999)
27 T. Ruzgas, E. Csbregi, J. Emneus, L. Gorton and G. Marko-Varga, Anal. Chim. Acta, 330, 123 (1996)   DOI   ScienceOn
28 B. Reinhammar, in: Copper proteins & copper enzymes (Ed: L. Rene), Chap. 1, Vol. III, CRC Press (1984)
29 C. F. Thurston, Microbiology, 140, 19 (1994)   DOI   ScienceOn
30 A. I. Yaropolov, O. V. Skorobogatko, S. S. Vartanov and S. D. Varfolomeyev, Appl. Biochem. Biotech., 49, 257 (1994)   DOI   ScienceOn
31 T. Wasa, K. Akimoto, T. Yao and S. Murao, Nippon Kagaku Kaishi, 9, 1398 (1984)
32 D. Quan, Y. Kim and W. Shin, J. Electroanal. Chem., 561, 181 (2004)   DOI   ScienceOn
33 D. Quan, Y. Kim, K. Yoon and W. Shin, Bull. Korean Chem. Soc., 23, 385 (2002)   DOI   ScienceOn
34 D. Quan and W. Shin, Materi. Sci. Eng. C, 24, 113 (2004)   DOI   ScienceOn
35 D. Quan and W. Shin, Electroanalysis, in press