Browse > Article
http://dx.doi.org/10.5229/JKES.2004.7.2.108

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials  

Lee Woo-Jin (Corrosion Research Center, University of Minnesota)
Pyun Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Smyrl W. H. (Corrosion Research Center, University of Minnesota)
Publication Information
Journal of the Korean Electrochemical Society / v.7, no.2, 2004 , pp. 108-123 More about this Journal
Abstract
Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.
Keywords
NSOM; Pitting; Imaging; Nanometal synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. J. Warner, M. P. Schmidt, F. Sommer and D. Bellot, Z. Metallkd., 86, 494 (1995)
2 P. Schmutz and G. S. Frankel, J. Electrochem. Soc., 145, 2295 (1998)   DOI   ScienceOn
3 A. J. Bard, F.-R. F. Fan, J. Kwak and O. Lev, Anal. Chem., 61, 132 (1989)   DOI
4 M. A. Alodan and W. H. Smyrl, J. Electrochem. Soc., 144, L282 (1997)   DOI   ScienceOn
5 M. A. Alodan and W. H. Smyrl, J. Electrochem. Soc., 145, 1571 (1998)   DOI   ScienceOn
6 M. Buechler, J. Kerimo, F. Guillaume and W. H. Smyrl, J. Electrochem. Soc., 147, 3691 (2000)   DOI   ScienceOn
7 T. Wilson, 'Confocal Microscopy', Academic Press, London (1990)
8 F. Guillaume, J. Evju, T. L. Knutson and W. H. Smyrl, J. Electrochem. Soc., 159, B262 (2003)
9 R. G. Buchheit, R. P. Grant, P. F. Hlava, B. McKenzie and G. L. Zender, J. Electmchem. Soc., 144, 2621 (1997)   DOI   ScienceOn
10 G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl. Phys. Lett., 40, 178 (1982)   DOI
11 G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986)   DOI   ScienceOn
12 R. C. Dunn, Chem. Rev., 99, 2891 (1999)   DOI   ScienceOn
13 S. Kirstein, Current Opinion in Colloid Interface Sci., 4, 256 (1999)   DOI   ScienceOn
14 J. D. McNeill, D. B. O'Connor and P. F. Barbara, J. Chem. Phys., 112, 781 (2000)   DOI   ScienceOn
15 Ch. Lienau, T. Elsaesser, 'Ultrafast Physical Processes in Semiconductors', Semimetals, Vol. 67, Academic Press, Boston, p. 39 (2001)   DOI
16 D. W. Pohl (Ed.), 'Near Field Optics', Daniel Courjon, NATO ASI Series E: Applied Sciences, in: Proceedings of NATO Advance Research Workshop on NFO, 26-28 October 1992, Kluwer Academic Publishers, Dordrecht, (1993)
17 J. P. Fillard, 'Near field optics and nanoscopy', World Scientific, River Edge, NJ, (1996)
18 M. A. Paesler and P. J. Moyer, 'Near-Field Optics Theory, Intstrumentation, and Applications', John Wiley & Sons, New York, (1996)
19 E. Abbe, J. Roy. Micr. Soc., 2, 300 (1882)   DOI
20 E. H. Synge, Philos. Mag., 6, 356 (1928)   DOI
21 E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, Science, 251, 1468 (1991)   DOI   ScienceOn
22 J. W. P. Hsu, Mat. Sci. & Eng. R, 33, 1 (2001)   DOI   ScienceOn
23 P. James, N. Casillas and W. H. Smyrl, J. Electrochem. Soc., 143, 3853 (1996)   DOI   ScienceOn
24 G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett., 49, 57 (1982)   DOI
25 T. Knutson, F. Guillaume, W.-J. Lee, M. Alhosan and W. H. Smyrl, Electrochim. Acta, 48, 3229 (2003)   DOI   ScienceOn
26 D. K. Nordstrom and H. M. May, 'The Environmental Chemistry of Aluminum', G. Sposito (Ed), CRC Press, Boca Raton, Florida, (1996)
27 G. Furrer, B. L. Phillips, K-U. Ulrich, R. Poethig and W. H. Casey, Science, 297, 2245 (2002)   DOI   ScienceOn
28 E. Barcia, O. R. Mattos, N. Pebere and B. Tribollet, J. Electrochem. Soc. 140, 2825 (1993)   DOI   ScienceOn
29 L. F. Gariias-Mesias and W. H. Smyrl, J. Electrochem. Soc., 146, 2495 (1999)   DOI
30 C. J. Robinson, R. H. Payne and A. E. Bell, J. Appl. Phys., 64, 4646 (1988)   DOI
31 G. Shi, L. F. Garfias-Mesias and W. H. Smyrl, J. Electropchem. Soc., 145, 2011 (1998)   DOI   ScienceOn
32 F. Garfias-Mesias, M. Alodan, P. I. James and W. H. Smyrl, J. Electrochem. Soc., 14, 2005 (1998)
33 S.-Y. Chang, L. Liu and S. A. Asher, J. Am. Chem. Soc., 116, 6739 (1994)   DOI   ScienceOn
34 M. Kondo, K. Shinozaki, L. Bergstrom and N. Mizutani, Langmuir, 11, 394 (1995)   DOI   ScienceOn
35 J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951)   DOI
36 A. N. Shipway, E. Katz and I. Willner, ChemPhysChem, 1, 18 (2000)   DOI   ScienceOn
37 E. J. Bjerneld, F. Svedberg and M. Kaell, Nano lett., 3, 593 (2003)   DOI   ScienceOn
38 E. Betzig, P. L. Finn and J. S. Weiner, Appl. Phys. Lett., 60, 2484 (1992)   DOI
39 R. Toledo-Crow, P. C. Yang, Y. Chen and M. Vaez-Iravani, Appl. Phys. Lett., 60, 2957 (1992)   DOI
40 K. Karrai and R. D. Grober, J. Electrochem. Soc., 66, 1842 (1994)
41 K. Karrai and R. D. Grober, Ultramicroscopy, 61, 197 (1995)   DOI   ScienceOn
42 C. Blanc, B. Lavelle and G. Mankowski, Corros. Sci., 39, 495 (1997)   DOI   ScienceOn
43 V. Guillaumin and G. Mankowski, Corros. Sci., 41, 421 (1999)   DOI   ScienceOn