Browse > Article
http://dx.doi.org/10.7857/JSGE.2021.26.2.001

The Potential Application of Passive Sampling Techniques in Contaminated Soil and Groundwater  

Kim, Pil-Gon (Division of Environmental Science and Ecological Engineering, Korea University)
Park, Joungho (College of Science and Technology, Korea University Sejong Campus)
Moon, JaeKyoung (College of Science and Technology, Korea University Sejong Campus)
Kwon, Jung-Hwan (Division of Environmental Science and Ecological Engineering, Korea University)
Kim, Jihee (School of Earth Sciences and Environmental Engineering, GIST)
Han, Seunghee (School of Earth Sciences and Environmental Engineering, GIST)
Hong, Yongseok (College of Science and Technology, Korea University Sejong Campus)
Publication Information
Journal of Soil and Groundwater Environment / v.26, no.2, 2021 , pp. 1-16 More about this Journal
Abstract
Passive samplers are environmental monitoring devices that are accumulating pollutants in adsorbing medium by diffusion. They are distinguished from active samplers which are generally required electric power to create artificial and advective movements facilitating mass transport from environment to samplers' adsorbing parts. Passive samplers have been applied to various environmental media such as air, water, sediment, groundwater, and soil with different but could be sometimes similar purposes. They have been primarily used to measure concentrations of pollutants in both homogeneous and heterogeneous environments with high resolution in space, i.e., millimeters. They also have been used to quantify time weighted average concentrations without multiple sampling efforts at different times. Human and ecological risk assessments are also a representative example for the application of passive samplers. However, it is hard to find a case study in Korea that passive samplers have ever applied in soil and groundwater with any of those purposes. In this research, extensive literatures are reviewed to identify the utility of passive sampler application on various environmental media and diverse pollutants including VOCs, HOCs, heavy metals, and etc. Finally, the potential uses of passive sampling techniques to the area of soil and groundwater science and engineering are critically evaluated.
Keywords
Passive sampler; Soil; Groundwater; Heavy metals; Organic pollutants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Enell, A., Lundstedt, S., Arp, H.P.H., Josefsson, S., Cornelissen, G., Wik, O., and Berggren Kleja, D., 2016, Combining Leaching and Passive Sampling To Measure the Mobility and Distribution between Porewater, DOC, and Colloids of Native OxyPAHs, N-PACs, and PAHs in Historically Contaminated Soil, Environ. Sci. Technol., 50(21), 11797-11805.   DOI
2 Ernstberger, H., Zhang, H., Tye, A., Young, S., and Davison, W., 2005, Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT, Environ. Sci. Technol., 39(6), 1591-1597.   DOI
3 Gomez-Eyles, J.L., Jonker, M.T.O., Hodson, M.E., and Collins, C.D., 2012, Passive Samplers Provide a Better Prediction of PAH Bioaccumulation in Earthworms and Plant Roots than Exhaustive, Mild Solvent, and Cyclodextrin Extractions, Environ. Sci. Technol., 46(2), 962-969.   DOI
4 Gorecki, T. and Namiesnik, J., 2002, Passive sampling. Trends. Analyt. Chem., 21(4), 276-291.   DOI
5 Greenwood, R., Mills, G., and Vrana, B., 2007, Passive Sampling Techniques in Environmental Monitoring, Volume 48, 1st Edition,Comprehensive Analytical Chemistry, Elsevier Science.
6 Gao, Y., Leermakers, M., Gabelle, C., Divis, P., Billon, G., Ouddane, B., Fischer, J.-C., Wartel, M., and Baeyens, W., 2006, High-resolution profiles of trace metals in the pore waters of riverine sediment assessed by DET and DGT, Sci. Total Environ., 362(1-3), 266-277.   DOI
7 Fernandez, L.A., Lao, W., Maruya, K.A., and Burgess, R.M., 2014, Calculating the Diffusive Flux of Persistent Organic Pollutants between Sediments and the Water Column on the Palos Verdes Shelf Superfund Site Using Polymeric Passive Samplers, Environ. Sci. Technol., 48(7), 3925-3934.   DOI
8 Fones, G.R., Davison, W., Holby, O., Jorgensen, B.B., and Thamdrup, B., 2001, High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander, Limnol. Oceanogr. 46(4), 982-988.   DOI
9 Freedman, Y.E., Ronen, D., and Long, G.L., 1996, Determination of Cu and Cd Content of Groundwater Colloids by Solid Sampling Graphite Furnace Atomic Absorption Spectrometry, Environ. Sci. Technol., 30(7), 2270-2277.   DOI
10 Garnier, J.-M., Garnier, J., Jezequel, D., and Angeletti, B., 2015, Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh, Sci. Total Environ., 536, 306-315.   DOI
11 Kalis, E.J., Weng, L., Dousma, F., Temminghoff, E.J., and Van Riemsdijk, W.H., 2006, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique, Environ. Sci. Technol., 40(3), 955-961.   DOI
12 Go, U.J. and Eom, I.-Y., 2014, Development of syringe pump assisted headspace sampler, J. Chromatogr. A, 1361, 88-94.   DOI
13 Asl-Hariri, S., Gomez-Rios, G.A., Gionfriddo, E., Dawes, P., and Pawliszyn, J., 2014, Development of Needle Trap Technology for On-Site Determinations: Active and Passive Sampling, Anal. Chem., 86(12), 5889-5897.   DOI
14 Amato, E.D., Simpson, S.L., Remaili, T.M., Spadaro, D.A., Jarolimek, C.V., and Jolley, D.F., 2016, Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT), Environ. Sci. Technol., 50(6), 3055-3064.   DOI
15 Apell, J.N. and Gschwend, P.M., 2014, Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds, Environ. Sci. Technol., 48(17), 10301-10307.   DOI
16 Arp, H.P.H., Lundstedt, S., Josefsson, S., Cornelissen, G., Enell, A., Allard, A.-S., and Kleja, D.B., 2014, Native Oxy-PAHs, NPACs, and PAHs in Historically Contaminated Soils from Sweden, Belgium, and France: Their Soil-Porewater Partitioning Behavior, Bioaccumulation in Enchytraeus crypticus, and Bioavailability, Environ. Sci. Technol., 48(19), 11187-11195.   DOI
17 Adamson, D.T., McHugh, T.E., Rysz, M.W., Landazuri, R., and Newell, C.J., 2012, Field Investigation of Vapor-phase-based Groundwater Monitoring, Ground Water Monit Remediat, 32(1), 59-72.   DOI
18 ASTM, 2013, D6246-08(2013)e1, Standard Practice for Evaluating the Performance of Diffusive Samplers, ASTM International, West Conshohocken, PA, 2013.
19 Hong, L. and Luthy, R.G., 2008, Uptake of PAHs into polyoxymethylene and application to oil-soot (lampblack)-impacted soil samples, Chemosphere, 72(2), 272-281.   DOI
20 Hale, S.E., Elmquist, M., Brandli, R., Hartnik, T., Jakob, L., Henriksen, T., Werner, D., and Cornelissen, G., 2012, Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial, Chemosphere, 87(2), 177-184.   DOI
21 ITRC, 2007a, (Interstate Technology & Regulatory Council) Vapor Intrusion Pathway: A Practical Guideline. VI-1. Washington, D.C.: Interstate Technology & Regulatory Council, Vapor Intrusion Team. www.itrcweb.org.
22 Jacinthe, P.A., Dick, W.A., 1996, Use of silicone tubing to sample nitrous oxide in the soil atmosphere. Soil Biol. Biochem., 28(6), 721-726.   DOI
23 Johnson, R.E. and Hajcak, C.A., 2007, Passive Diffusion Groundwater Samplers: A New Way to Sample Groundwater, Environ. Claims J., 19(1-2), 88-96.   DOI
24 Joyce, A.S., Portis, L.M., Parks, A.N., and Burgess, R.M., 2016, Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation, Environ. Sci. Technol., 50(21), 11437-11451.   DOI
25 Kaserzon, S.L., Kennedy, K., Hawker, D.W., Thompson, J., Carter, S., Roach, A.C., Booij, K., and Mueller, J.F., 2012, Development and Calibration of a Passive Sampler for Perfluorinated Alkyl Carboxylates and Sulfonates in Water, Environ. Sci. Technol., 46(9), 4985-4993.   DOI
26 Kwon-Rae, K., and Owens, G., 2009, Chemodynamics of heavy metals in long-term contaminated soils: Metal speciation in soil solution, J Environ Sci (China), 21(11), 1532-1540.   DOI
27 환경부, 2015, 토양오염물질위해성평가지침.
28 Kaserzon, S.L., Vijayasarathy, S., Braunig, J., Mueller, L., Hawker, D.W., Thomas, K.V., and Mueller, J.F., 2019, Calibration and validation of a novel passive sampling device for the time integrative monitoring of per-and polyfluoroalkyl substances (PFASs) and precursors in contaminated groundwater, J. Hazard. Mater., 366, 423-431.   DOI
29 Kot-Wasik, A., Zabiegala, B., Urbanowicz, M., Dominiak, E., Wasik, A., and Namiesnik, J., 2007, Advances in passive sampling in environmental studies, Anal. Chim. Acta, 602(2), 141-163.   DOI
30 Louise, P., Willey, R., Mchale, T., Major, W., Hall, T., Bailey, R., Gagnon, K., and Gooch, G., 2014, Demonstration of the AGI Universal Samplers (F.K.A. the GORE® Modules) for Passive Sampling of Groundwater, Environmental Security Technology Certification Program (ESTCP), Project ER-200921.
31 Laemmel, T., Maier, M., Schack-Kirchner, H., and Lang, F., 2017, An in situ method for real-time measurement of gas transport in soil, Eur. J. Soil. Sci., 68(2), 156-166.   DOI
32 Laor, Y., Ronen, D., and Graber, E.R., 2003, Using a Passive Multilayer Sampler for Measuring Detailed Profiles of GasPhase VOCs in the Unsaturated Zone, Environ. Sci. Technol., 37(2), 352-360.   DOI
33 Lucas, A.R., Reid, N., Salmon, S.U., and Rate, A.W., 2014, Quantitative assessment of the distribution of dissolved Au, As and Sb in groundwater using the diffusive gradients in thin films technique, Environ. Sci. Technol., 48(20), 12141-12149.   DOI
34 Mayer, P., Parkerton, T.F., Adams, R.G., Cargill, J.G., Gan, J., Gouin, T., Gschwend, P.M., Hawthorne, S.B., Helm, P., Witt, G., You, J., and Escher, B.I., 2014, Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations, Integr. Environ. Assess. Manag., 10(2), 197-209.   DOI
35 Magnusson, T., 1989, A method for equilibration chamber sampling and gas chromatographic analysis of the soil atmosphere, Plant Soil, 120(1), 39-47.   DOI
36 Mali, N., Cerar, S., Korosa, A., and Auersperger, P., 2017, Passive sampling as a tool for identifying micro-organic compounds in groundwater. Sci. Total Environ., 593-594, 722-734.   DOI
37 Marchal, G., Smith, K.E., Mayer, P., Wollesen de Jonge, L., and Karlson, U.G., 2014, Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil, Environ. Pollut. (Barking, Essex : 1987), 188, 124-131.   DOI
38 McLeish, K., Ryan, M.C., and Chu, A., 2007, Integrated Sampling and Analytical Approach for Common Groundwater Dissolved Gases, Environ. Sci. Technol., 41(24), 8388-8393.   DOI
39 Muhammad, I., Puschenreiter, M., and Wenzel, W.W., 2012, Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants, Sci. Total Environ., 416, 490-500.   DOI
40 Muijs, B. and Jonker, M.T., 2012, Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?, Environ. Sci. Technol., 46(2), 937-944.   DOI
41 Nauer, P.A., Chiri, E., and Schroth, M.H., 2013, Poly-Use MultiLevel Sampling System for Soil-Gas Transport Analysis in the Vadose Zone, Environ. Sci. Technol., 47(19), 11122-11130.   DOI
42 Temminghoff, E.J., Plette, A.C., Van Eck, R., and Van Riemsdijk, W.H., 2000, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique, Anal. Chim. Acta, 417(2), 149-157.   DOI
43 Martin, H., Patterson, B.M., Davis, G.B., and Grathwohl, P., 2003, Field Trial of Contaminant Groundwater Monitoring: Comparing Time-Integrating Ceramic Dosimeters and Conventional Water Sampling, Environ. Sci. Technol., 37(7), 1360-1364.   DOI
44 NRC, 2003, Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications, Committee on Bioavailability of Contaminants in Soils and Sediments, National Research Council.
45 Ort, C., Lawrence, M.G., Rieckermann, J., and Joss, A., 2010, Sampling for Pharmaceuticals and Personal Care Products (PPCPs) and Illicit Drugs in Wastewater Systems: Are Your Conclusions Valid? A Critical Review, Environ. Sci. Technol., 44(16), 6024-6035.   DOI
46 Ter Laak, T.L., Agbo, S.O., Barendregt, A., and Hermens, J.L., 2006, Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests, Environ. Sci. Technol., 40(4), 1307-1313.   DOI
47 USEPA, 1989, Risk Assessment Guidance for Superfund. Volume I. Human Health Evaluation Manual (Part A). EPA/540/1-89/002.
48 USEPA, 2002, Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers, Office of Solid Waste and Emergency Response, EPA 542-S-02-001.
49 USEPA, 2007, Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment, OSWER 9285.7-80.
50 Vandenhove, H., Antunes, K., Wannijn, J., Duquene, L., and Van Hees, M., 2007, Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability. Sci. Total Environ., 373(2-3), 542-555.   DOI
51 Vinturella, A.E., Burgess, R.M., Coull, B.A., Thompson, K.M., and Shine, J.P., 2004, Use of Passive Samplers To Mimic Uptake of Polycyclic Aromatic Hydrocarbons by Benthic Polychaetes, Environ. Sci. Technol., 38(4), 1154-1160.   DOI
52 Vroblesky, D., 2001a, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells, Part 1: Deployment, Recovery, Data Interpretation, and Quality Control and Assurance; U.S. Geological Survey Water-Resources Investigations Report 01-4060, 18 pp.
53 Weisbrod, N., Ronen, D., and Nativ, R., 1996, New Method for Sampling Groundwater Colloids under Natural Gradient Flow Conditions, Environ. Sci. Technol., 30(10), 3094-3101.   DOI
54 Weng, L., Van Riemsdijk, W.H., and Temminghoff, E.J., 2010, Effects of lability of metal complex on free ion measurement using DMT, Environ. Sci. Technol., 44(7), 2529-2534.   DOI
55 Yin, H., Cai, Y., Duan, H., Gao, J., and Fan, C., 2014, Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes, J. Hazard. Mater., 264, 184-194.   DOI
56 Burgess, R.M., Lohmann, R., Schubauer-Berigan, J.P., Reitsma, P., Perron, M.M., Lefkovitz, L., and Cantwell, M.G., 2015, Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites, Environ. Toxicol. Chem., 34(8), 1720-1733.   DOI
57 Zarrouk, S., Bermond, A., Benzina, N.K., Sappin-Didier, V., and Denaix, L., 2014, Diffusive gradient in thin-film (DGT) models Cd and Pb uptake by plants growing on soils amended with sewage sludge and urban compost, Environ Chem Lett, 12(1), 191-199.   DOI
58 ITRC, 2007b, Protocol for Use of Five Passive Samplers to Sample for a Variety of Contaminants in Groundwater (The Interstate Technology & Regulatory Council), Document DSP5.
59 Leermakers, M., Gao, Y., Gabelle, C., Lojen, S., Ouddane, B., Wartel, M., and Baeyens, W., 2005, Determination of High Resolution Pore Water Profiles of Trace Metals in Sediments of the Rupel River (Belgium) using Det (Diffusive Equilibrium in Thin Films) and DGT (Diffusive Gradients in Thin Films) Techniques, Water Air Soil Pollut., 166(1-4), 265-286.   DOI
60 Peng, Q., Wang, M., Cui, Z., Huang, J., Chen, C., Guo, L., and Liang, D., 2017, Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT), Environ. Pollut., 225, 637-643.   DOI
61 USEPA, 2015, Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, June 2015.
62 Vroblesky, D., 2001b, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells, Part 2: Field Tests; U.S. Geological Survey Water-Resources Investigations Report 01-4061.
63 Fauvelle, V., Kaserzon, S.L., Montero, N., Lissalde, S., Allan, I.J., Mills, G., Mazzella, N., Mueller, J.F., and Booij, K., 2017, Dealing with Flow Effects on the Uptake of Polar Compounds by Passive Samplers, Environ. Sci. Technol., 51(5), 2536-2537.   DOI
64 ASTM, 2016, ASTM D7758 - 11(2016) Standard Practice for Passive Soil Gas Sampling in the Vadose Zone for Source Identification, Spatial Variability Assessment, Monitoring, and Vapor Intrusion Evaluations.
65 Bade, R., Oh, S., and Shin, W.S., 2012, Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations, Sci. Total Environ., 416, 127-136.   DOI
66 Roulier, J.L., Tusseau-Vuillemin, M.H., Coquery, M., Geffard, O., and Garric, J., 2008, Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: First results of an experimental study, Chemosphere, 70(5), 925-932.   DOI
67 Amato, E.D., Simpson, S.L., Belzunce-Segarra, M.J., Jarolimek, C.V., and Jolley, D.F., 2015, Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates, Environ. Sci. Technol., 49(24), 14204-14212.   DOI
68 Yao, Y., Wang, P.-F., Wang, C., Hou, J., and Miao, L.-Z., 2017, The Evaluation on the Cadmium Net Concentration for Soil Ecosystems, Int. J. Environ. Res. Public Health, 14(3), 297.   DOI
69 Maruya, K.A., Zeng, E.Y., Tsukada, D., and Bay, S.M., 2009, A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water, Environ. Toxicol. Chem., 28(4), 733-740.   DOI
70 Bao, L.J., Wu, X., Jia, F., Zeng, E.Y., and Gan, J., 2016, Isotopic exchange on solid-phase micro extraction fiber in sediment under stagnant conditions: Implications for field application of performance reference compound calibration, Environ. Toxicol. Chem., 35(8), 1978-1985.   DOI
71 Barcelona, M.J. and Helfrich, J.A., 1986, Well construction and purging effects on ground-water samples, Environ. Sci. Technol., 20(11), 1179-1184.   DOI
72 Challis, J.K., Hanson, M.L., and Wong, C.S., 2016, Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants, Anal. Chem., 88(21), 10583-10591.   DOI
73 DeSutter, T.M., Sauer, T.J., and Parkin, T.B., 2006, Porous tubing for use in monitoring soil CO2 concentrations, Soil Biol. Biochem., 38(9), 2676-2681.   DOI
74 Duquene, L., Vandenhove, H., Tack, F., Van Hees, M., and Wannijn, J., 2010, Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass, J Environ Radioact, 101(2), 140-147.   DOI
75 Endo, S., Hale, S.E., Goss, K.-U., and Arp, H.P.H., 2011, Equilibrium Partition Coefficients of Diverse Polar and Nonpolar Organic Compounds to Polyoxymethylene (POM) Passive Sampling Devices, Environ. Sci. Technol., 45(23), 10124-10132.   DOI
76 Barcelona, M.J., Varljen, M.D., Puls, R.W., and Kaminski, D., 2005, Ground water purging and sampling methods: History vs. hysteria, Ground Water Monit Remediat, 25(1), 52-62.
77 Bopp, S., WeiB, H., and Schirmer, K., 2005, Time-integrated monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater using the Ceramic Dosimeter passive sampling device. J. CHROMATOGR. A, 1072(1), 137-147.   DOI
78 Cattani, I., Fragoulis, G., Boccelli, R., and Capri, E., 2006, Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils, Chemosphere, 64(11), 1972-1979.   DOI
79 Bopp, S.K., McLachlan, M.S., and Schirmer, K., 2007, Passive Sampler for Combined Chemical and Toxicological Long-Term Monitoring of Groundwater: The Ceramic Toximeter, Environ. Sci. Technol., 41(19), 6868-6876.   DOI
80 Britt, S.L., Parker, B.L., and Cherry, J.A., 2010, A Downhole Passive Sampling System To Avoid Bias and Error from Groundwater Sample Handling, Environ. Sci. Technol., 44(13), 4917-4923.   DOI
81 Davison, W., Grime, G.W., Morgan, J.A.W., and Clarke, K., 1991, Distribution of dissolved iron in sediment pore waters at submillimetre resolution, Nature, 352, 323-325.   DOI
82 de Jonge, H. and Rothenberg, G., 2005, New Device and Method for Flux-Proportional Sampling of Mobile Solutes in Soil and Groundwater, Environ. Sci. Technol., 39(1), 274-282.   DOI
83 DiGiulio, D., Paul, C., Cody, R., Willey, R., Clifford, S., Mosley, R., Lee, A., and Christensen, K., 2006, Comparison of Geoprobe® PRT and AMS GVP Soil-Gas Sampling Systems with Dedicated Vapor Probes in Sandy Soils at the Raymark Superfund Site, U.S. Environmental Protection Agency Office Of Research And Development National Risk Management Research Laboratory Cincinnati, OH 45268.
84 Divine, C.E. and McCray, J.E., 2004, Estimation of Membrane Diffusion Coefficients and Equilibration Times for Low-Density Polyethylene Passive Diffusion Samplers, Environ. Sci. Technol., 38(6), 1849-1857.   DOI
85 Docekalova, H., Kovarikova, V., and Docekal, B., 2012, Mobility and bioaccessibility of trace metals in soils assessed by conventional extraction procedures and passive diffusive samplers, Chem. Speciat. Bioavailab., 24(4), 261-265.   DOI
86 Panikov, N.S., Mastepanov, M.A., and Christensen, T.R., 2007, Membrane probe array: Technique development and observation of CO2 and CH4 diurnal oscillations in peat profile, Soil Biol. Biochem., 39(7), 1712-1723.   DOI
87 Koci, V., Ocelka, T., and Grabic, R., 2009, Background level of POPs in ground water assessed on chemical and toxicity analysis of exposed semipermeable membrane devices, Air, Soil Water Res. 2, ASWR. S2128.
88 Kot, A., Zabiegala, B., and Namiesnik, J., 2000, Passive sampling for long-term monitoring of organic pollutants in water, Trends Analyt Chem, 19(7), 446-459.   DOI
89 Lang, S.-C., Hursthouse, A., Mayer, P., Kotke, D., Hand, I., Schulz-Bull, D., and Witt, G., 2015, Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems, Mar. Pollut. Bull., 101(1), 296-303.   DOI
90 Papastefanou, C., 2002, An overview of instrumentantion for measuring radon in soil gas and groundwaters, J Environ Radioact, 63(3), 271-283.   DOI
91 Petersen, S.O., 2014, Diffusion probe for gas sampling in undisturbed soil, Eur J Soil Sci, 65(5), 663-671.   DOI
92 Scherr, K.E., Hasinger, M., Mayer, P., and Loibner, A.P., 2009, Effect of vegetable oil addition on bioaccessibility and biodegradation of polycyclic aromatic hydrocarbons in historically contaminated soils, J. Chem. Technol. Biotechnol., 84(6), 827-835.   DOI
93 Seethapathy, S., Gorecki, T., and Li, X., 2008, Passive sampling in environmental analysis. J. Chromatogr. A, 1184(1-2), 234-253.   DOI
94 Senila, M., 2014, Real and simulated bioavailability of lead in contaminated and uncontaminated soils, J. Environ. Health Sci. Eng., 12, 108.   DOI
95 Stefaniuk, M. and Oleszczuk, P., 2016, Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil, Environ. Pollut. (Barking, Essex : 1987), 218, 242-251.   DOI
96 Senila, M., Levei, E.A., and Senila, L.R., 2012, Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics, Chem. Cent. J., 6(1), 119.   DOI
97 Simpson, S.L., Yverneau, H., Cremazy, A., Jarolimek, C.V., Price, H.L., and Jolley, D.F., 2012, DGT-Induced Copper Flux Predicts Bioaccumulation and Toxicity to Bivalves in Sediments with Varying Properties, Environ. Sci. Technol., 46(16), 9038-9046.   DOI
98 Spalding, B.P. and Watson, D.B., 2006, Measurement of Dissolved H2, O2, and CO2 in Groundwater Using Passive Samplers for Gas Chromatographic Analyses, Environ. Sci. Technol., 40(24), 7861-7867.   DOI
99 Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J., and Morrison, G., 2005, Passive sampling techniques for monitoring pollutants in water, Trends Analyt Chem, 24(10), 845-868.   DOI
100 Zhang, C., Ding, S., Xu, D., Tang, Y., and Wong, M.H., 2014, Bioavailability assessment of phosphorus and metals in soils and sediments: a review of diffusive gradients in thin films (DGT), Environ. Monit. Assess., 186(11), 7367-7378.   DOI
101 Zhang, H. and Davison, W., 1995, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem., 67(19), 3391-3400.   DOI
102 한국지하수토양환경학회, 2008, 토양위해성평가, 동화기술.
103 Yong Seok, H., 2013, 종설 : 박막분산탐침(diffusive gradient in thin film probe)의수중생물학적이용가능한중금속측정적용, 한국물환경학회지, 29(5), 691-702.
104 Gut, A., Blatter, A., Fahrni, M., Lehmann, B.E., Neftel, A., and Staffelbach, T., 1998, A new membrane tube technique (METT) for continuous gas measurements in soils, Plant Soil, 198(1), 79-88.   DOI