Browse > Article
http://dx.doi.org/10.7857/JSGE.2019.24.5.001

Enhanced Germination & Initial Seedling Development by Liquid Phase Ozonation of Plant Seeds  

Yang, Heekyung (Department of Civil & Environmental Engineering, Gachon University)
Jeong, Yuna (Department of Civil & Environmental Engineering, Gachon University)
Choi, Wonchul (Department of Civil & Environmental Engineering, Gachon University)
Bae, Bumhan (Department of Civil & Environmental Engineering, Gachon University)
Publication Information
Journal of Soil and Groundwater Environment / v.24, no.5, 2019 , pp. 1-10 More about this Journal
Abstract
The effects of liquid phase ozonation on seed dormant alleviation and subsequent seedling growth were studied using two plant seeds of Indian jointvetch (Aeschynomene indica L.) and Indian mallow (Abutilon avicennae Gaertn.). At a constant ozone concentration ($80g/m^3$), contact time varied from 10 to 60 min with 10 min interval. Germination rate, root length, and specific root length were compared after 3-day incubation on gel-medium. The germination rate increased significantly (p<0.05) in the 50 min treatment of Indian mallow by 30% compared to the control. Enhanced root elongation was observed in the seeds of 30 min treatment of Indian jointvetch and 30~50 min treatment of Indian mallow. Specific root length, an indicator of environmental change, did not show significant changes, suggesting the level of ozone treatment has no adverse effect on seedling development. The results indicate that liquid phase seed ozonation can be an effective on-site germination alleviation method in the application of phytoremediation.
Keywords
Gelling agent; Germination; Ozone; Root elongation; SmartRoot; Specific root length;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maximiano, C., Carmona, R., Souza, N.O.S., de Alencar, E.R., and Blum, L.E.B., 2018, Physiological and sanitary quality of maize seeds preconditioned in ozonated water, R. Bras. Eng. Agric. Ambiental, 22(5), 360-365.   DOI
2 Murashige, T. and Skoog, F., 1962, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 15, 473-497.   DOI
3 Oh, Y.Y., Lee, S.U., Kim, Y.J., Jeong, J.T., Ryu, J.H., Kim, S., Jung, J., Bae, H.S., Lee, S.H., Kim, Y.D., Hong, H.C., and Kim, S.L., 2015, Influence of seed germination by treatment of seed dormancy in Indian Jointvetch (Aeschynomene Indica L.) seed, J. Korean Soc. Int. Agric., 27(5), 663-666.   DOI
4 O'Neill, M.A., Selvendran, R.R., and Morris, V.J., 1983, Structure of the acidic extracellular gelling polysaccharide produced by Pseudomonas elodea, Carbohydr. Res., 124(1), 123-133.   DOI
5 Oracz, K., El-Maarouf Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F., and Bailly, C., 2007, ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation, Plant J., 50, 452-465.   DOI
6 Ostonen, I., Puttsepp, U., Biel, C., Alberton, O., Bakker, M.R., Lohmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A., Vanguelova, E., Weih, M., and Brunner, I., 2007, Specific root length as an indicator of environmental change, Plant Biosyst., 141(3), 426-442.   DOI
7 Rock, S.A., 2003, Vegetative Covers for Waste Containment, In Phytoremediation, Scheper, T. and Tsao, D.T. eds., Adv. Biochem. Eng./Biotechnol., 78, 157-170.   DOI
8 Sauer, D.B. and Burroughs, R., 1986, Disinfection of seed surfaces with sodium hypochlorite, J. Phytopathol., 76(7), 745-749.   DOI
9 Abdul-Baki, A.A., 1974, Pitfalls in using sodium hypochlorite as a seed disinfectant in 14C incorporation studies, Plant Physiol., 53, 768-771.   DOI
10 Arthur, G.D., Stirk, W.A., and van Staden, J., 2004, Screening of aqueous extracts from gelling agents (Agar and Gelrite) for rootstimulating activity, S. Afr. J. Bot., 70(4), 595-601.   DOI
11 Bae, B., Kim, S.Y., Lee, I.S., and Chang, Y.Y., 2002, Kinetics of uptake and phyto-transformation of 2,4,6-trinitrotoluene by indigenous grasses in hydroponic cultures, Kor. Chem. Eng. Res., 24, 675-687.
12 Bailly, C., 2004, Active oxygen species and antioxidants in seed biology, Seed Sci. Res., 14(2), 93-107.   DOI
13 Buah, J.N., Kawamitsu, Y., Sato, S., and Murayama, S., 1999, Effects of different types and concentrations of gelling agents on the physical and chemical properites of media and the growth of banana (Musa spp.) in vitro, Plant Prod. Sci., 2(2), 138-145.   DOI
14 Carl Roth GmbH Co., 2017, Gellan Gum for Microbial Applications: User Manual.
15 Eissenstat, D.M., 1991, On the relationship between specific root length and the rate of root proliferation : A field study using citrus rootstocks, New Phytol., 118, 63-68.   DOI
16 El-Maarouf-Bouteau, H. and Bailly, C., 2008, Oxidative signaling in seed germination and dormancy, Plant Signaling Behav., 3(3), 175-182.   DOI
17 Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C., 2008, Molecular aspects of seed dormancy, Annu. Rev. Plant Biol, 59, 387-415.   DOI
18 Koornneef, M., Bentsink, L., and Hilhorst, H., 2002, Seed dormancy and germination, Curr. Opin. Plant Biol., 5, 33-36.   DOI
19 Ichi, T., Koda, T., Asai, I., Hatanaka, A., and Sekiya, J., 1986, Effects of gelling agents on in vitro culture of plant tissues, Agric. Biol. Chem., 50(9), 2397-2399.   DOI
20 Klimaszewska, K., Bernier-Cardou, M., Cyr, D.R., and Sutton, B.C.S., 2000, Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L., In Vitro Cell. Dev. Biol.-Plant, 36, 279-286.   DOI
21 Korea Seed & Variety Service (KS&VS), 2017, Seed Inspection Guideline, 2017-3.
22 Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., and Laughlin, D.C., 2016, Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum, J. Ecol., 104, 1299-1310.   DOI
23 Lazukin, A., Seerdukov, Y., Pinchuk, M., Stepanova, O., Krivov, S., and Lyubushkina, I., 2018, Treatment of spring wheat seeds by ozone generated from humid air and dry oxygen, Res. Agr. Eng., 64(1), 34-40.   DOI
24 Liu, Y., Fang, J., Xu, F., CHu, J., Yan, C., Schlappi, M.R., Wang, Y., and Chu, C., 2014, Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: A comparison of dormant and non-dormant rice cultivars, J. Genet. Genomics, 41, 327-338.   DOI
25 Lobet, G., Pages, L., and Draye, X., 2011, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol., 157, 29-39.   DOI
26 Whitaker, C., Beckett, R.P., Minibayeva, F.V., and Kranner, I., 2010, Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds, S. Afr. J. Bot., 76, 601-605.   DOI
27 Sudhakar, N., Nagendra-Prasad, D., Mohan, N., Hill, B., Gunasekaran, M., and Murugesan, K., 2011, Assessing influence of ozone in tomato seed dormancy alleviation, Am. J. Plant Sci., 2, 443-448.   DOI
28 van den Dries, N., Gianni, S., Czerednik, A., Krens, F.A., and de Klerk, G.-J.M., 2013, Flooding of the apoplast is a key factor in the development of hyperhydricity, J. Exp. Bot., 64(16), 5221-5230.   DOI
29 Vazquez, M.E.M., Pena-Valdivia, C.B., Garcia, J.R., Solano, E., Cmpos, H., and Garcia, E., 2017, Chemical scarification and ozone in seed dormancy alleviation of wild and domesticated Opuntia, Cactaceae, Ozone Sci. Eng., 39, 104-114.   DOI
30 Violleau, F., Hadjeba, K., Albet, J., Cazalis, R., and Olivier S., 2008, Effect of oxadative treatment on corn seed germination kinetics, Ozone Sci. Eng., 30, 418-422.   DOI
31 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(7), 671-675.   DOI