Browse > Article

Estimation of Cadmium, Copper, Lead Mobility in Column Packed with Furnace Slag  

Lee, Gwang-Hun (Department of Civil and Environmental Engineering, Seoul National University)
Chung, Jae-Shik (Department of Civil and Environmental Engineering, Seoul National University)
Nam, Kyoung-Phile (Department of Civil and Environmental Engineering, Seoul National University)
Park, Jun-Boum (Department of Civil and Environmental Engineering, Seoul National University)
Publication Information
Journal of Soil and Groundwater Environment / v.13, no.4, 2008 , pp. 54-61 More about this Journal
Abstract
Permeable reactive barriers (PRBs) technology has been focused in contaminated groundwater remediation. It is necessary to select adequate reactive material according to characteristics of contaminant in groundwater. In this research, the reaction between reactive material and heavy metal contaminants was estimated through column test. Reactive material was slag, which has been produced in Gwangyang power plant, and heavy metal contaminants were cadmium, lead and copper. Column test was performed in the condition of 1) single and multi contaminated solution and 2) different initial concentration of cadmium. Retardation factor of cadmium is 3.94 in multi contamination. But that of copper is 40.3 in single and 25 in multi. The difference of retardation between cadmium and copper is due to affinity, resulted from the difference of electronegativity. In multi-contamination, copper effluent concentration was above initial copper concentration and at the same time lead effluent concentration was decreased. This phenomenon was considered that lead extract copper sorbed in slag and then lead was sorbed to the vacant sorption site instead. And as the initial concentration was increased, the retardation factor of cadmium became decreased.
Keywords
Slag; Heavy metal; Column test; Advection-dispersion equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박광석, 김형석, 전희동, 2006, 수저 퇴적물 오염 개선을 위한 제강슬래그 복토정화법의 활용, 한국관개배수, 13(2), 310-322
2 박용하, 서경원, 2005, 휴폐금속광산지역의 토양오염관리방안, 한국환경정책.평가연구원, p. 4-5
3 정명채, 정문영, 최연왕, 2004, 국내 휴/폐광 금속광산 주변의 중금속 환경오염 평가, 자원환경지질, 37(1), 21-33
4 정진기, 유경근, 이재천, 2007, 오염 토양 처리 기술의 국내현황, 2007 추계 학술발표회 논문집, 한국공업화학회, 한경대학교, p. 582-585
5 Huang, C.P., Wang, H.W., and Chiu, P.C., 1998, Nitrate reduction by metallic iron, Wat. Res., 32(8), 2257-2264   DOI   ScienceOn
6 Kielemoes, J., Boever, P.D., and Verstraete, W., 2000, Influence of denitrification on the corrosion of iron and stainless steel powder, Environ. Sci. Technol., 34(4), 663-671   DOI   ScienceOn
7 Murray B. McBride, 1994, Environmetal Chemistry of Soils, Oxford University Press, New York, p. 122-127
8 김상근, 정하익, 송봉준, 장원석, 2005, Atomizing slag를 반응벽체의 매질로 이용하기 위한 중금속제거 기초연구, 2005년 춘계 학술연구회발표논문집, 한국폐기물학회, 안동대학교, p. 331-334
9 김태희, 2002, 제강슬래그의 재활용, 세라미스트, 5(5), 14-18
10 국회환경포럼, 한국토양환경학회, 1999, 토양환경문제 워크샵 : 토양오염 무엇이 문제인가?, 한국토양환경학회, 국회의원회관
11 Lackovic, J.A., Nikolaidis, N.P., and Dobbs, G.M., 2000, Inorganic arsenic removal by zero-valent iron, Environ. Sci. Technol., 17, 29-39
12 구진회, 송병열, 김희갑, 2007, 어린이 놀이터의 중금속 오염, 2007년 환경공동학술대회 논문집, 한국대기환경학회, 부산 BEXCO, p. 203
13 Choi, D.H., Maeng, S.J., Seo, D.C., and Lee, D.H., 1995, The effect of alkali leaching from steelmaking slag on heavy metal retainment, J. of Korea Solid Wastes Eng. Soc., 12(4), 429-436
14 Roberts, A.L., Totten, L.A., Burris, A.W., and Campbell, T.J., 1996, Reductive elimination of chlorinated ethylenes by zerovalent iron metals, Environ. Sci. Technol., 30, 2654-2659   DOI   ScienceOn
15 Westerhoff, P., 2003, Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0), J. of Environ. Eng., 129(1), 10-16   DOI   ScienceOn
16 이평구, 강민주, 박성원, 염승준, 2003, 광미와 오염토양 내 중금속 용출특성에 미치는 pH 영향: 청양과 서보중석광산, 자원환경지질, 36(6), 469-480
17 Park, J.B., Lee, S.H., Lee, J.W., and Lee, C.Y., 2002, Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B), J. of Haz. Mat., B95, 65-79
18 Lee, S.H., Lee, K.H., and Park, J.B., 2006, Simultaneous removal of Cd and Cr(VI) using Fe-Loaded Zeolite, J of Environ. Eng., 132(4), 445-450   DOI   ScienceOn
19 배범한, 정재훈, 이성재, 2002, 제철부산물로 충진된 반응벽체에 의한 지하수내의 염소계 유기용매의 분해, 대한환경공학회지, 24(10), 1761-1774
20 Gupta, V.K., Srivastava, S.K., and Mohan D., 1997, Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of malachite greenform waste water using activated carbon and activated Slag, Ind. Eng. Chem. Res., 2207-2218
21 USEPA, 1999, Field Application of In Situ Remediation Technologies: Permeable Reactive Barriers, Report # EPA 542-R-99-002
22 Mier, M.V., Callejas, R.L., Gehr, R., Cisneros, B.E.J., and Alvarez, P.J.J., 2001, Heavy metal removal with Mexican clinoptilolite multi-component ionic exchange, Wat. Res., 35(2), 373-378   DOI   ScienceOn
23 이진수, 전효택, 2004, 금속광산지역 독성 중금속원소들의 인체 위해성 평가, 자원환경지질, 37(1), 73-86
24 Melitas, N., Chuffe-Moscoso, O., and Farrell, J., 2001, Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects, Environ. Sci. and Technol., 35, 3948-3953   DOI   ScienceOn
25 Fetter, C.W., 1999, Contaminant Hydrology, 2nd Ed., Prentice-Hall Inc., New Jersey, p. 122-129
26 Kim, T.H. and Park, K.B., 2000, Swine waterwater treatnebt orioertues if steel-making slag, Clean Technology, 6(2), 85-92
27 이광헌, 최성대, 정재식, 박준범, 남경필, 2007, 중금속 오염물질에 대한 슬래그의 흡착특성평가, 2007년 춘계학술발표회, 한국지반공학회, 고려대학교, p. 175-184