Browse > Article

Distributions of Chromium, Copper, and Arsenic in Soils Adjacent to Stairs, a Deck, and a Sound Barrier Constructed with a Wood Preservative CCA-Treated Timbers  

Kim He-Kap (Department of Environmental Science, Kangwon National University)
Kim Dong-Jin (National Institute of Environmental Research (NIER))
Park Jeong-Gue (Policy Research Division, Korea Environment Institute (KEI))
Shin Yong-Seung (Policy Research Division, Korea Environment Institute (KEI))
Hwang In-Young (School of Environmental Science and Engineering, Inje University)
Kim Yoon-Kwan (Environmental & Whole Information System (E&WIS))
Publication Information
Journal of Soil and Groundwater Environment / v.11, no.1, 2006 , pp. 54-64 More about this Journal
Abstract
Chromated copper arsenate (CCA), a wood preservative, has been widely used to protect wood products from attacks by bacteria, fungi and insects. However, the use of CCA is currently forbidden or limited to some applications in many countries because the toxic elements (Cr, Cu, and As) of CCA are released into the environments during outdoor uses, which may cause adverse health effects on humans and ecological systems. This study was conducted to investigate the distributions of chromium, copper and arsenic in soils adjacent to two CCA-treated wood structures. In a 7 month old pond entry structure, ten surface soil samples (0-2.5 cm) were collected at lateral distances of 0, 0.5, and 1 m from the stairway, and nine surface soil samples were collected beneath the deck. Nine top soil samples were taken from a 2 year old sound barrier structure at lateral distances of 0, 1, and 2 m. Background surface soil samples were also collected from each structure. Samples were analyzed for some physicochemical properties such as pH, electrical conductivity, organic matter content, and soil texture. Following the extraction of the elements with a microwave digestion system, samples were analyzed for Cr, Cu, and As. The concentrations of the three elements in soils adjacent to the structures were significantly elevated compared to the background levels, indicating that the elements have been leached out of the structures. Released e1ements showed lateral concentration gradients within 1 m. The elevations of the three elements in soils underneath the deck did not seem different (background-corrected concentrations: Cr, 5.01 mg/kg; Cu, 5.50 mg/kg; As, 4.91 mg/kg), while the elements in soils near the sound barrier were elevated in the order of As>Cu>Cr with measured concentrations of 49.7, 44.7 and 52.5 mg/kg, respectively. Background As, Cu, and Cr concentrations near the sound barrier were 9.88, 30.8, and 46.5 mg/kg, respectively. These results showed that CCA constituents are released into the environment and it is suggested that risk assessment need to be conducted to investigate harmful effects of the released elements on humans and ecological systems.
Keywords
CCA; Chromium; Copper; Arsenic; Soil; Wood preservative;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chirenje, T., Ma, L.Q., Clark, C., and Reeves, M., 2003, Cu, Cr and As distribution in soils adjacent to pressure-treated decks, fences and poles, Environ. Pollut., 124, 407-417   DOI   ScienceOn
2 DEFRA and Environmental Agency, 2002, Contaminated Land Exposure Assessment Model (CLEA): Technical basis and algorithms, Report CLR 10, Department for Environment, Food and Rural Affairs, UK
3 Tyler, L.D. and McBride, M.B., 1982, Mobility and extractability of cadmium, copper, nickel and zinc inorganic and mineral soil columns, Soil Sci., 134, 198-205   DOI
4 U.S. Environmental Protection Agency (EPA), 2002, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, Appendix A, USA
5 Zagury, G.W., Sampson, R., and Deschenes, L., 2003, Occurrence of metals in soil and groundwater near chromated copper arsenate-treated utility poles, J. Environ. Qual., 32, 507-514   DOI   ScienceOn
6 Dawson, B.S.W., Parker, G.F., Cowan, F.J., and Hong, S.O., 1991, Inter-laboratory determination of copper, chromium, and arsenic in timber treated with wood preservative, Analyst, 116, 339-346   DOI
7 김동진, 2005, CCA 방부처리 목재로부터 용출된 중금속과 유류 유출에서 비롯된 유기화합물 의한 토양오염 특성, 강원대학교 이학박사 학위논문
8 Belluck, D.A., Benjamin, S.L., Baveye, P., Sampson, J., and Johnson, B., 2003, Widespread arsenic contamination of soils in residential areas and public spaces: an emerging regulatory or medical crisis? Int. J. Toxicol., 22, 109-128   DOI
9 Schultz, T.P., Nicholas, D.D., and Pettry, D.E., 2002, Depletion of CCA-C from ground-contact wood: results from two field sites with significantly different soils, Holzforschung, 56, 125-129   DOI   ScienceOn
10 이재근, 김길동, 1995, 목재방부처리에 관한 연구;CCA 및 ZKF를 중심으로, 상명대학교 산업과학연구소, 산업과학연구, 7, 133-123
11 조남훈, 2005, 목재방부제 CCA로 처리된 목재로부터 물과의 접촉으로 인한 구리, 크롬 및 비소의 용출에 대한 실험실 평가, 강원대학교 이학석사 학위논문
12 Blassino, M., Solo-Gabriele, H., and Townsend, T., 2002, Pilot scale evaluation of sorting technologies for CCA treated wood waste, Waste Manage. Res., 20, 290-301   DOI
13 Bouyoucos, G.J., 1936, Directions for making mechanical analysis of soils by the hydrometer method, Soil Sci., 4, 225-228
14 김규혁, 김재진, 1993, 산성조건하에서 처리재로부터 CCA성분의 용출 및 처리재 내구성의 감소에 관한 연구, 한국목재공학회 학술논문발표요지집, 한국목재공학회, 10-11
15 Archer, K. and Preston, A., 1994, Depletion of wood preservatives after four years' marine exposure at Mt Maunganui harbor, NZ (IRG/WP94-50036), Stockholm: The Intemational Research Group on Wood Preservation
16 김식영, 2001, 목재 방부처리 업계의 현황, 제4회 목재공학회 산학연 심포지움: 목재의 방부 . 방충 세미나
17 Robinson, B., Greven, M., Green, S., Sivakumaran, S., Davidson, P., and Clothier, B., 2005, Leaching of copper, chromium and arsenic from treated vineyard posts in Marlborough, New Zealand, Sci. Total Environ., In Press
18 Weis, J.S. and Weis, P., 1995, Effects of chromated copper arsenate (CCA) pressure treated wood in the aquatic environment. Ambio, 24, 269-274
19 Townsend, T., Solo-Gabriele, H., Tolaymat, T., Stook, K., and Hosein, N., 2003, Chromium, copper, and arsenic concentrations in soil underneath CCA-treated wood structure, Soil Sediment Contam., 12, 779-798   DOI   ScienceOn
20 환경부, 2001, 토양오염기준
21 Stilwell, D.E. and Graetz, T.J., 2001, Copper, chromium, and arsenic levels in soil near highway traffic sound barriers built using CCA pressure-treated wood, Bull. Environ. Contam. Toxicol., 67, 303-308   DOI
22 나종범, 김규혁, 1995, 크롬-구리 화합물계 목재방부제의 정착 및 용탈특성 비교, 목재공학, 23, 66-72
23 Prado, A.G.S. and Airoldi, C., 2003, Humic acid-divalent cation interations, Thermochimica Acta, 405, 287-292   DOI   ScienceOn
24 Solo-Gabriene, H. and Townsend, T.G., 1999, Disposal practices and management alternatives for CCA-treated wood waste, Waste Manage. Residential, 17, 378-389   DOI
25 환경부, 2002, 토양오염공정시험법
26 U.S. Environmental Protection Agency (EPA) http://www.epa.gov/waterscience/criteria/wqcriteria.html#priority
27 Hingston, J.A., Collins, C.D., Murphy, R.J., and Lester, J.N., 2001, Leaching of chromated copper arsenate wood preservatives: a review, Environ. Pollut., 111, 53-66   DOI   ScienceOn