Browse > Article

Effect of Sediment Size On Air Injection and Flowing Aspect of Groundwater Saturated Zone  

이준호 (한국외국어대학교 자연과학대학 환경학과)
박갑성 (한국외국어대학교 자연과학대학 환경학과)
Publication Information
Journal of Soil and Groundwater Environment / v.8, no.3, 2003 , pp. 13-22 More about this Journal
Abstract
Laboratory scale study for an air injection and flowing aspect of groundwater saturated zone was conducted for three sediment grains (AMG 0.34, 1.38, 3.89 mm diameter). Air flow for AMG (Average Modal diameter Grains) 0.34 mm diameter grain size provides indication of pattern of channelized air flow in saturated zone and expansion state in above saturated zone. Maximum area of influence is approximately l5.2%/$\textrm{m}^2$for AMG of 0.34 mm diameter. For AMG of 1.38 mm and 3.89 mm modal diameter grains, air flow are pervasive air flow, forming a symmetrical cone of influence around the injection point. Maximum areas affected are 37%/$\textrm{m}^2$for AMG 1.38 mm diameter and 30%/$\textrm{m}^2$for AMG 3.89 mm diameter. AMG 1.38 mm and 3.89 mm diameter grains show onset of collapse and approach to steady state in above saturated zone, respectively. In this study, optimal sites for in situ air sparging, may be grain diameters between about AMG 1.5-2.5 mm diameter.
Keywords
Groundwater saturated zone; Average Modal diameter Grains (AMG); Air flow; Area of influence; In situ Air Sparging (IAS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 US EPA, A Technology Assessment of Soil Vapor Extraction and Air Sparging, EPA/600/R-92/173, 214p. (1992)
2 박준석, 남궁완, 황의영, '공기공급이 토양내 페놀화합물 제거에 미치는 영향', 한국토양환경학회지, 5(2), pp. 3-12 (2000)
3 Lundegard, P.D., amd LaBrecque, D.J., 'Air spaging in a sandy aquifer (Florence, Oregon, U.S.A.) : Actual and apparent radius of influence', Journal of Contaminant Hydrology, 19, pp.1-27 (1995)   DOI   ScienceOn
4 Peterson, J.W, Lepczyk, P.A., and Lake, K.L., 'Effect of sediment size on area of influence during groundwater remediation by air sparging : a laboratory approach', Environmental Geology, 38(1), pp. 1-6 (1999)   DOI   ScienceOn
5 한정상, 지하수환경과 오염, 박영사, 서울, pp.1-6 (2000)
6 Johnston, C.D., Rayner, J.L., and Briegel, D., 'Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia', Journal of Contaminant Hydrology, 59, pp. 87-111 (2002)   DOI   PUBMED   ScienceOn
7 김훈미, 이강근, 'Numerical Simulation and Laboratory Test Analysis of Air Sparging for TCE Remediation', 2003년. 한국지하수토양환경학회 총회 및 춘계학술발표회, pp. 348-351 (2003)
8 환경부, 토양오염공정시험방법 , pp. 26-32 (1999)
9 US EPA, Assessing UST Corrective Action Technologies : Diagnostic Evaluation of In Situ SVE-Based System Performance, EPA/600/R-96/041, (1996)
10 Carter, M. R., Soil sampling and methods of methods of analysis, Lewis, (1993)
11 Peterson, J.W., Murray, K.S., Tulu, Y.I., and Peuler, B.D., 'Air-flow geometry in air sparging of fine-grained sands', Hydrogeology Journal, 9, pp. 168-176 (2001)   DOI   ScienceOn
12 김재덕, 김영래, 황경엽, 이성철, '토양증기추출법에 의한 휘발유 오염토앙의 현장복원 연구',한국토양환경학회지, 5(1), pp. 13-23 (2000)
13 Peterson, J.W., DeBoer, M.J., and Lake, K.L., 'A laboratory simulation of toluene cleanup by air sparging of watersaturated sands', Journal of Hazardous Materiats, 72, pp.167-178 (2000)   DOI   ScienceOn
14 공성호,이승희,조욱상,곽무영, '고속도로 주변과 주유소의 토양오염에 관한 연구', 한양대학교 에너지.환경 기술연구소 (1998)
15 Braida, W.J., and Ong, S.K., 'Air sparging effectiveness : laboratory characterization of air-channel mass transfer zone for VOC volatilization', Journal of Hazardous Materials, B87, pp. 241-258 (2001)