Browse > Article
http://dx.doi.org/10.17702/jai.2017.18.1.1

Optimum Condition of Pencil Drawing Paper Sensor(PDPS) for Temperature Detecting  

Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Beak, Young-Min (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Park, Ha-Sung (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Engineering Research Institute)
Publication Information
Journal of Adhesion and Interface / v.18, no.1, 2017 , pp. 1-7 More about this Journal
Abstract
This study is about basic sensor experiment using PDPS by common pencil. 20 mm length, 3 mm thickness of line using 4B pencil is optimum condition. In order to be stable at point of contact between pencil line and copper wire, silver paste is needed. At using the PDPS, thermal detecting is able and thermal properties is inversely proportional to electrical resistance in the based on empirical formula. The sensor can be also used in the composites mold via the empirical formula by the relationship between thermal impact and electrical resistance. The change of electrical resistance relates the interfacial property of composites. It leads to expectation of properties.
Keywords
electrical resistance method; interfacial; pencil drawing; paper sensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. J. Kwon, Z. J. Wang, J. J. Kim, K. W. Jang, and J. M. Park, Journal of Adhesion and Interface, 14, 75 (2013).   DOI
2 D. J. Kwon, Z. J. Wang, G. Y. Gu, and J. M. Park, Journal of Adhesion and Interface, 13, 58 (2001).
3 Z. J. Wang, D. J. Kwon, G. Y. Gu, J. K. Park, W. I. Lee, and J. M. Park, Journal of Adhesion and Interface, 12, 88 (2011).
4 H. Erismis, D. Nemec, M. Geiss, V. Skakalova, U. Ritter, I. Kolaric, and S. Roth, Microelectronic Engineering, 88, 2513 (2011).   DOI
5 X. Niu, H. Zhao, C Chen, and M. Lan, Electrochimica Acta, 65, 97 (2012).   DOI
6 K. Han, Z. Liu, H. Ye, and F. Dai, Journal of Power Sources, 263, 85 (2014).   DOI
7 Y. T. Lai, Y. M. Chen, T. Liu, and Y. J. Yang, Sensor and Actuators A: Physical, 177, 48 (2012).   DOI
8 M. I. Tiwana, S. J. Redmond, and N. H. Lovell, Sensor and Actuators: Physical, 179, 17 (2012).   DOI
9 K. H. Wong, D. S. Mohammed, S. J. Pickering, and R. Brooks, Composites Science and Technology, 72, 835 (2012).   DOI
10 N. G. Karsli, A. Aytac, M. Akbulut, V. Deniz, and O. Guven, Radiation Physics and Chemistry, 84, 74 (2013).   DOI
11 K. P. Yoo, L. T. Lim, N. K. Min, M. J. Lee, C. J. Lee, and C. W. Park, Sensor and Actuator B: Chemical, 145, 120 (2010).   DOI
12 N. Kumar and R. R. N. Goyal Sensor and Actuators B: Chemical, 239, 1060 (2017).   DOI
13 W. Li, D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, and C. Yu, Sensor and Actuators B: Chemical, 231, 230 (2016).   DOI
14 H. Heydari, M. B. Gholivand, and A. Abdolmaleki, Materials Science and Engineering C, 66, 16 (2016).   DOI
15 O. Saglam, D. G. Dilgin, B. Ertek, and Y. Dilgin, Materials Science and Engineering C, 60, 156 (2016).   DOI
16 X. Sun, H. Kharbas, J. Peng, and L. S. Turng, Polymer, 56, 102 (2015).   DOI