Browse > Article
http://dx.doi.org/10.6564/JKMRS.2022.26.4.046

Backbone hydrogen bonding interaction of the inactive isoform of type III antifreeze proteins studied by 1H/15N-HSQC spectra  

Seo-Ree, Choi (Department of Chemistry and RINS, Gyeongsang National University)
Sung Kuk, Kim (Department of Chemistry and RINS, Gyeongsang National University)
Jaewon, Choi (Department of Chemistry and RINS, Gyeongsang National University)
Joon-Hwa, Lee (Department of Chemistry and RINS, Gyeongsang National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.26, no.4, 2022 , pp. 46-50 More about this Journal
Abstract
Antifreeze proteins (AFPs) bind to the ice crystals and then are able to inhibit the freezing of body fluid at subzero temperatures. Type III AFPs are categorized into three subgroups, QAE1, QAE2, and SP isoforms, based on differences in their isoelectric points. We prepared the QAE2 (AFP11) and SP (AFP6) isoforms of the notched-fin eelpout AFP and their mutant constructs and determined their temperature gradients of amide proton chemical shifts (𝚫δ/𝚫T) using NMR. The nfeAFP11 (QAE2) has the distinct 𝚫δ/𝚫T pattern of the first 310 helix compared to the QAE1 isoforms. The nfeAFP6 (SP) has the deviated 𝚫δ/𝚫T values of many residues, indicating its backbone conformational distortion. The study suggests the distortion in the H-bonding interactions and backbone conformation that is important for TH activities.
Keywords
NMR; thermostability; backbone stability; antifreeze protein; ice-binding protein;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Yeh and R. E. Feeney, Chem. Rev. 96, 601 (1996)
2 K.V. Ewart, Q. Lin, and C. L. Hew, Cell. Mol. Life Sci. 55, 271 (1999)
3 G. L. Fletcher, C. L. Hew, and P. L. Davies, Annu. Rev. Physiol. 63, 359 (2001)
4 Z. Jia and P. L. Davies, Trends Biochem. Sci. 27, 101 (2002)
5 Y. Nishimiya, R. Sato, M. Takamichi, A. Miura, and S. Tsuda, FEBS J. 272, 482 (2005)
6 C. P. Garnham, Y. Nishimiya, S. Tsuda, and P. L. Davies, FEBS Lett. 586, 3876 (2012)
7 C. P. Garnham, R. L. Campbell, and P. L. Davies, Proc. Natl. Acad. Sci. USA 108, 7363 (2011)
8 S. Mahatabuddin, D. Fukami, T. Arai, Y. Nishimiya, R. Shimizu, C. Shibazaki, H. Kondo, M. Adachi, and S. Tsuda, Proc. Natl. Acad. Sci. USA 115, 5456 (2018)
9 S.-R. Choi, Y.-J. Seo, M. Kim, Y. Eo, H.-C. Ahn, A.-R. Lee, C.-J. Park, K.-S. Ryu, H.-K. Cheong, S. S. Lee, E.S. Jin, and J.-H. Lee, FEBS Lett. 590, 4202 (2016)
10 S.-R. Choi, J. Lee, Y.-J. Seo, H. S. Kong, M. Kim, E.S. Jin, J. R. Lee, and J.-H. Lee, Comput. Struct. Biotechnol. J. 19, 897 (2021)
11 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu , J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
12 W. Lee, M. Tonelli, and J. L. Markley. Bioinformatics 31, 1325 (2015)
13 N. H. Andersen, J. W. Neidigh, S. M. Harris, G. M. Lee, Z. Liu, and H. Tong, J. Am. Chem. Soc. 119, 8547 (1997)
14 M. Ohnishi and D. W. Urry, Biochem. Biophys. Res. Commun. 36, 194 (1969)
15 J. Hong, Y. Hu, C. Li, Z. Jia, B. Xia, and C. Jin, PLoS One 5, e15682 (2010)
16 T. Cierpicki and J. Otlewski, J. Biomol. NMR 21, 249 (2001)
17 T. Cierpicki, I. Zhukov, R. A. Byrd, and J. Otlewski, J. Magn. Reson. 157, 178 (2002)
18 Y.-G. Choi, C.-J. Park, H.-E. Kim, Y.-J. Seo, A.-R. Lee, S.-R. Choi, S. S. Lee, and J.-H. Lee, J. Biomol. NMR 61, 137 (2015)