Browse > Article
http://dx.doi.org/10.6564/JKMRS.2022.26.2.021

High-pressure NMR application for α-synuclein  

Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of the Korean Magnetic Resonance Society / v.26, no.2, 2022 , pp. 21-23 More about this Journal
Abstract
High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.
Keywords
high-pressure NMR; ${\alpha}-Synuclein$; amyloid; protein aggregation; NMR spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. J. Lee, C. Choi, and S. J. Lee, J. Biol. Chem. 277, 671 (2002)   DOI
2 M. G. Spillantini, et al. Nature 388, 839 (1997)   DOI
3 A. Abeliovich, et al. Neuron 25, 239 (2000)   DOI
4 M. Vidovic and M. G. Rikalovic, Cells 11, 1732 (2022)   DOI
5 L. C. Serpell, J. Berriman, R. Jakes, M. Goedert, and R. A. Crowther, Proc. Natl. Acad. Sci. U. S. A. 97, 4897 (2000)   DOI
6 M. D. Tuttle, et al. Nat. Struct. Mol. Biol. 235, 409 (2016)
7 Y. Sun, et al. Nat. Commun. 12, 1 (2021)   DOI
8 G. A. P. de Oliveira, et al. Sci. Rep. 6, 37990 (2016)   DOI
9 F. Piccirilli, et al. Biophys. J. 113, 1685 (2017)   DOI
10 J. Burre, et al. Science 329, 1663 (2010)   DOI
11 F. X. Theillet, Nature 530, 45 (2016)   DOI
12 B. Fauvet, et al. J. Biol. Chem. 287, 15345 (2012)   DOI
13 L. Fonseca-Ornelas, et al. Nat. Commun. 5, 5857 (2014)   DOI
14 M. Vilar, et al. Proc. Natl. Acad. Sci. U. S. A. 105, 8637 (2008)   DOI
15 R. Guerrero-Ferreira, et al. Elife 7, 1 (2018)
16 B. Li, et al. Nat. Commun. 9, 1 (2018)   DOI
17 N. Rezaei-Ghaleh, Angew. Chemie - Int. Ed. 57, 15262 (2018)   DOI
18 D. Foguel, et al. Proc. Natl. Acad. Sci. U. S. A. 100, 9831 (2003)   DOI
19 J. Roche, J. Ying, A. S. Maltsev, and A. Bax, ChemBioChem 14, 1754 (2013)   DOI
20 U. Golebiewska and S. Scarlata, FEBS Lett. 589, 3309 (2015)   DOI
21 F. Piccirilli, et al. Arch. Biochem. Biophys. 627, 46 (2017)   DOI
22 H. J. Dyson and P. E. Wright, Curr. Opin. Struct. Biol. 70, 44 (2021)
23 J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)