Browse > Article
http://dx.doi.org/10.6564/JKMRS.2019.23.1.033

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions  

Sugiki, Toshihiko (Institute for Protein Research, Osaka University)
Lin, Yuxi (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Institute)
Lee, Young-Ho (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Institute)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.23, no.1, 2019 , pp. 33-39 More about this Journal
Abstract
Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.
Keywords
in-cell NMR; protein-protein interaction; drug discovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. X. Theillet, A. Binolfi, T. Frembgen-Kesner, K. Hingorani, M. Sarkar, C. Kyne, C. Li, P. B. Crowley, L. Gierasch, G. J. Pielak, A. H. Elcock, A. Gershenson, and P. Selenko, Chem. Rev. 114, 6661 (2014)   DOI
2 J. Danielsson, X. Mu, L. Lang, H. Wang, A. Binolfi, F. X. Theillet, B. Bekei, D. T. Logan, P. Selenko, H. Wennerstrom, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 112, 12402 (2015)   DOI
3 S. Majumder, C. M. DeMott, S. Reverdatto, D. S. Burz, and A. Shekhtman, Biochemistry 55, 4568 (2016)   DOI
4 J. Hamatsu, D. O'Donovan, T. Tanaka, T. Shirai, Y. Hourai, T. Mikawa, T. Ikeya, M. Mishima, W. Boucher, B. O. Smith, E. D. Laue, M. Shirakawa, and Y. Ito, J. Am. Chem. Soc. 135, 1688 (2013)   DOI
5 D. Sakakibara, A. Sasaki, T. Ikeya, J. Hamatsu, T. Hanashima, M. Mishima, M. Yoshimaru, N. Hayashi, T. Mikawa, M. Walchli, B. O. Smith, M. Shirakawa, P. Guntert, and Y. Ito, Nature 458, 102 (2009)   DOI
6 K. Inomata, A. Ohno, H. Tochio, S. Isogai, T. Tenno, I. Nakase, T. Takeuchi, S. Futaki, Y. Ito, H. Hiroaki, and M. Shirakawa, Nature 458, 106 (2009)   DOI
7 S. Ogino, S. Kubo, R. Umemoto, S. Huang, N. Nishida, and I. Shimada, J. Am. Chem. Soc. 131, 10834 (2009)   DOI
8 L. Barbieri, E. Luchinat, and L. Banci, Nat. Protoc. 11, 1101 (2016)   DOI
9 F. X. Theillet, A. Binolfi, B. Bekei, A. Martorana, H. M. Rose, M. Stuiver, S. Verzini, D. Lorenz, M. van Rossum, D. Goldfarb, and P. Selenko, Nature 530, 45 (2016)   DOI
10 A. Binolfi, A. Limatola, S. Verzini, J. Kosten, F. X. Theillet, H. M. Rose, B. Bekei, M. Stuiver, M. van Rossum, and P. Selenko, Nat. Commun. 25, 10251 (2016)
11 S. Kubo, N. Nishida, Y. Udagawa, O. Takarada, S. Ogino, and I. Shimada, Angew. Chem. Int. Ed. Engl. 52, 1208 (2013)   DOI
12 S. Reckel, R. Hansel, F. Lohr, and V. Dotsch, Prog. Nucl. Magn. Reson. Spectrosc. 51, 91 (2007)   DOI
13 E. Luchinat, and L. Banci, Acc. Chem. Res. 51, 1550 (2018)   DOI
14 Z. Serber, W. Straub, L. Corsini, A. M. Nomura, N. Shimba, C. S. Craik, P. Ortiz de Montellano, and V. Dotsch, J. Am. Chem. Soc. 126, 7119 (2004)   DOI
15 Z. Serber, P. Selenko, R. Hansel, S. Reckel, F. Lohr, J. E. Ferrell Jr, G. Wagner, and V. Dotsch, Nat. Protoc. 1, 2701 (2006)   DOI
16 D. S. Burz, K. Dutta, D. Cowburn, and A. Shekhtman, Nat. Methods 3, 91 (2006)   DOI
17 D. S. Burz, K. Dutta, D. Cowburn, and A. Shekhtman, Nat. Protoc. 1, 146 (2006)   DOI
18 E. Luchinat, L. Barbieri, and L. Banci, Sci. Rep. 12, 17433 (2017)
19 J. Xue, D. S. Burz, and A. Shekhtman, Adv. Exp. Med. Biol. 992, 17 (2012)   DOI
20 D. S. Burz, and A. Shekhtman, Curr. Protoc. Protein Sci. 61, UNIT 17.11 (2010)
21 X. Mu, S. Choi, L. Lang, D. Mowray, N. V. Dokholyan, J. Danielsson, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 114, E4556 (2017)   DOI
22 J. Xie, R. Thapa, S. Reverdatto, and D. S. Burz, J. Med. Chem. 52, 3516 (2009)   DOI
23 S. Rahman, Y. Byun, M. I. Hassan, J. Kim, and V. Kumar, Biochim. Biophys. Acta 1865, 547 (2017)   DOI
24 C. M. DeMott, R. Girardin, J. Cobbert, S. Reverdatto, and D. S. Burz, ACS Chem. Biol. 13, 733 (2018)   DOI
25 T. Sugiki, K. Furuita, T. Fujiwara, and C. Kojima, Molecules 23, E148 (2018)   DOI
26 H. Tochio, Curr. Opin. Chem. Biol. 16, 609 (2012)   DOI
27 Z. Serber, and V. Dotsch, Biochemistry 40, 14317 (2001)   DOI
28 Z. Serber, R. Ledwidge, S. Miller, and V. Dotsch, J. Am. Chem. Soc. 123, 8895 (2001)   DOI
29 A. Reckel, F. Lohr, and V. Dotsch, Chembiochem. 6, 1601 (2005)   DOI
30 C. B. Kang, Int. J. Mol. Sci. 20, 139 (2019)   DOI
31 T. Sugiki, T. Fujiwara, and C. Kojima, Expert Opin. Drug Discov. 9, 1189 (2014)   DOI
32 C. Barnes, and G. Pielak, Proteins 79, 347 (2011)   DOI
33 G. Xu, Y. Ye, X. Liu, S. Cao, Q. Wu, and K. Cheng, Biochemistry 53, 1971 (2014)   DOI
34 Y. Ito, T. Mikawa, and B. O. Smith, Methods Mol. Biol. 895, 19 (2012)   DOI
35 T. Ikeya, A. Sasaki, D. Sakakibara, Y. Shigemitsu, J. Hamatsu, T. Hanashima, M. Mishima, M. Yoshimasu, N. Hayashi, T. Mikawa, D. Nietlispach, M. Walchli, B. O. Smith, M. Shirakawa, P. Guntert, and Y. Ito, Nat. Protoc. 5, 1051 (2010)   DOI