Browse > Article
http://dx.doi.org/10.6564/JKMRS.2018.22.1.001

Hyperpolarization Researches with Parahydrogen  

Shim, Joongmoo (Department of Chemistry, Korea Military Academy)
Jeong, Keunhong (Department of Chemistry, Korea Military Academy)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.22, no.1, 2018 , pp. 1-9 More about this Journal
Abstract
Among several NMR hyperpolarization techniques, parahydrogen-based hyperpolarization technique is recently extensively utilized to enhance the sensitivity of the conventional NMR/MRI spectroscopy. Two mostly investigated research topics are PHIP (Parahydrogen Induced Polarization) and SABRE (Signal Amplification By Reversible Exchange), which are commonly using the parahydrogen as the source of hyperpolarization. Those researches have been considered as the promising techniques that could provide hyperpolarized states on the ambient substrates including biologically important materials. Therefore, based on their potentials, we briefly reviewed several important experimental results on those topics after introducing the basic principle of parahydrogen and its generation with conceptual explanations. We hope this review will broaden the parahydrogen-based hyperpolarization transfer study on many researches in Korea.
Keywords
Parahydrogen; Hyperpolarization; NMR; PHIP; SABRE;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015)   DOI
2 G. E. Pake, J. Chem. Phys. 16, 327 (1948)
3 Y. Bai, P. A. Hill, and I. J. Dmochowski, Anal. Chem. 84, 9935 (2012)   DOI
4 C. Witte and L. Schroder, NMR Biomed. 26, 788 (2013)   DOI
5 C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986)   DOI
6 J. Natterer and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)   DOI
7 K. Jeong, J. Kor. Magn. Reson. Soc. 20, 114 (2016)   DOI
8 S. Kwon, S. Min, H. Chae, S. K. Namgoong , K. Jeong, J. Kor. Magn. Reson. Soc. 21, 126 (2017)
9 A. Koch and J. Bargon, Inorg. Chem. 40, 533 (2001)   DOI
10 R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson, and G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 67, 1 (2012)
11 D. Canet, C. Aroulanda, P. Mutzenhardt, S. Aime, R. Gobetto, and F. Reineri, Concepts Magn. Reson. Part A Bridg. Educ. Res. 28, 321 (2006)
12 S. B. Duckett and N. J. Wood, Coord. Chem. Rev. 252, 2278 (2008)   DOI
13 I. V. Koptyug, K. V. Kovtunov, S. R. Burt, M. S. Anwar, C. Hilty, S. I. Han, A. Pines, and R.Z. Sagdeev, J. Am. Chem. Soc. 129, 5580 (2007)   DOI
14 K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D.A. Barskiy, and I. V. Koptyug, Top. Curr. Chem. 338, 123 (2012)
15 D. A. Barskiy, I. Bukhtiyarov, and I. V Koptyug, Phys. Chem. Chem. Phys. 14, 11008 (2012)   DOI
16 V. V. Zhivonitko, K. V. Kovtunov, I. E. Beck, A. B. Ayupov, V. I. Bukhtiyarov, and I. V. Koptyug, J. Phys. Chem. C 115, 13386 (2011)   DOI
17 K. V. Kovtunov, D.A. Barskiy, A.M. Coffey, M.L. Truong, O.G. Salnikov, A.K. Khudorozhkov, E.A. Inozemtseva, I.P. Prosvirin, V.I. Bukhtiyarov, K.W. Waddell, E.Y. Chekmenev, and I. V. Koptyug, Chem. Eur. J. 20, 11636 (2014)
18 V. V. Zhivonitko, V.V. Telkki, K. Chernichenko, T. Repo, M. Leskela, V. Sumerin, and I. V. Koptyug, J. Am. Chem. Soc. 136, 598 (2014)   DOI
19 N.M. Zacharias, H.R. Chan, N. Sailasuta, B.D. Ross, and P. Bhattacharya, J. Am. Chem. Soc. 134, 934 (2012)   DOI
20 P. Bhattacharya, E.Y. Chekmenev, W.H. Perman, K.C. Harris, A.P. Lin, V.A. Norton, C.T. Tan, B.D. Ross, and D.P. Weitekamp, J. Magn. Reson. 186, 150 (2007)   DOI
21 P. Bhattacharya, E.Y. Chekmenev, W.F. Reynolds, S. Wagner, N. Zacharias, H.R. Chan, R. Bunger, and B.D. Ross, NMR Biomed. 24, 1023 (2011)   DOI
22 F. Reineri, T. Boi, and S. Aime, Nat. Commun. 6, 5858 (2015)   DOI
23 T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, and B. Fedorczyk, Chem. Eur. J. 21, 12616 (2015)   DOI
24 R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, and D.C. Williamson, Science 323, 1708 (2009)   DOI
25 R.E. Mewis, Magn. Reson. Chem. 53, 789 (2015)   DOI
26 M.J. Cowley, R.W. Adams, K.D. Atkinson, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J. a B. Lohman, R. Kerssebaum, D. Kilgour, and R.E. Mewis, J. Am. Chem. Soc. 133, 6134 (2011)   DOI
27 P.J. Rayner, M.J. Burns, A.M. Olaru, P. Norcott, M. Fekete, G.G.R. Green, L.A.R. Highton, R.E. Mewis, and S.B. Duckett, Proc. Natl. Acad. Sci. U.S.A. 114, E3188 (2017)   DOI
28 M.L. Truong, T. Theis, A.M. Coffey, R. V. Shchepin, K.W. Waddell, F. Shi, B.M. Goodson, W.S. Warren, and E.Y. Chekmenev, J. Phys. Chem. C 119, 8786 (2015)   DOI
29 R. V. Shchepin, M.L. Truong, T. Theis, A.M. Coffey, F. Shi, K.W. Waddell, W.S. Warren, B.M. Goodson, and E.Y. Chekmenev, J. Phys. Chem. Lett. 6, 1961 (2015)   DOI
30 T. Theis, M.L. Truong, A.M. Coffey, R. V. Shchepin, K.W. Waddell, F. Shi, B.M. Goodson, W.S. Warren, and E.Y. Chekmenev, J. Am. Chem. Soc. 137, 1404 (2015)   DOI
31 T. Theis, G.X. Ortiz, A.W.J. Logan, K.E. Claytor, Y. Feng, W.P. Huhn, V. Blum, S.J. Malcolmson, E.Y. Chekmenev, Q. Wang, and W.S. Warren, Sci. Adv. 2, e1501438 (2016)
32 R. V. Shchepin, B.M. Goodson, T. Theis, W.S. Warren, and E.Y. Chekmenev, ChemPhysChem 18, 1961 (2017)   DOI
33 W. Iali, P.J. Rayner, and S.B. Duckett, Sci. Adv. 4, eaao6250 (2018)   DOI
34 K. Buckenmaier, M. Rudolph, C. Back, T. Misztal, U. Bommerich, P. Fehling, D. Koelle, R. Kleiner, H.A. Mayer, K. Scheffler, J. Bernarding, and M. Plaumann, Sci. Rep. 7, (2017)
35 K.X. Moreno, K. Nasr, M. Milne, A.D. Sherry, and W.J. Goux, J. Magn. Reson. 257, 15 (2015)   DOI