Browse > Article
http://dx.doi.org/10.6564/JKMRS.2016.20.4.114

Minireview on Nuclear Spin Polarization in Optically-Pumped Diamond Nitrogen Vacancy Centers  

Jeong, Keunhong (Department of Chemistry, University of California)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.20, no.4, 2016 , pp. 114-120 More about this Journal
Abstract
Nitrogen vacancy-centered diamond has recently emerged as a promising material for various applications due to its special optical and magnetic properties. In particular, its applications as a fluorescent biomarker with small toxicity, magnetic field and electric field sensors have been a topic of great interest. Recent review (R. Schirhagl et al 2014) introduced those applications using single NV-center in nanodiamond. In this minireview, I introduce the rapidly emerging DNP (Dynamic Nuclear Polarization) field using optically-pumped NV center in diamonds. Additionally, the possibility of exploiting the optically-pumped NV center for polarization transfer source, which will produce a profound impact on room temperature DNP, will be discussed.
Keywords
Nuclear Magnetic Resonance; Dynamic Nuclear Polarization; Nitrogen Vacancy Center;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014)   DOI
2 H. Ko, G. Gong, G. Jeong, I. Cho, H. Seo, and Y. Lee, J. Kor. Magn. Reson. Soc. 19, 124 (2015)   DOI
3 T. Walker, and W. Happer, Rev. Mod. Phys. 69, 629 (1997)   DOI
4 C. Witte, and L. Schroeder, NMR Biomed. 26, 788 (2013)   DOI
5 M. Bouchiat, T. Carver, and C. Varnum, Phys. Rev. Lett. 5, 373 (1960)   DOI
6 C. Bowers, and D. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986)   DOI
7 J. Natterer, and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997)   DOI
8 J. A. Reimer, Solid State NMR 37, 3 (2010)   DOI
9 S. E. Hayes, S. Mui, and K. Ramaswamy, J. Chem. Phys. 128, (2008)
10 M. Goez, Concept. Magnetic Res. 7, 69 (2005)
11 J. H. Lee, A. Sekhar, and S. Cavagnero, J. Am. Chem. Soc. 133, 8062 (2011)   DOI
12 B. Lama, J. H. P. Collins, D. Downes, A. N. Smith, and J. R. Long, NMR Biomed. 29, 226 (2016)   DOI
13 C. O. Bretschneider, U. Akbey, F. Aussenac, G. L. Olsen, A. Feintuch, H. Oschkinat, and L. Frydman, ChemPhysChem 17, 2691 (2016)   DOI
14 R. S. Sussmann, CVD Diamond for Electronic Devices and Sensors; John Wiley: Chichester, U.K. (2009)
15 P. Dutta, G. V. Martinez, and R. J. Gillies, J. Phys. Chem. Lett. 5, 597 (2014)   DOI
16 A. M. Panich, Crit. Rev. Solid State Mater. Sci. 37, 276 (2012)   DOI
17 E. Rej, T. Gaebel, T. Boele, D. E.J. Waddington, and D. J. Reilly, Nat. Commun. 9459 (2015)
18 L. B. Casabianca, A. I. Shames, A. M. Panich, O. Shenderova, and L. Frydman, J. Phys. Chem. C 115, 19041 (2011)   DOI
19 E. Rej, T. Gaebel, D. E.J. Waddington, and D. J. Reilly, arXiv:1606.06822v1 (2016)
20 M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C.L. Hollenberg, Phys. Rep. 528, 1 (2013)   DOI
21 J. P. King, P. J. Coles, and J. A. Reimer, Phys. Rev. B 81, 073201 (2010)   DOI
22 E. Scott, M. Drake, and J. A. Reimer, J. Magn. Reson. 264, 154 (2016)   DOI
23 V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J. Wrachtru, Phys. Rev. Lett. 102, 057403 (2009)   DOI
24 R. Fischer, A. Jarmola, P. Kehayias, and D. Budker, Phys. Rev. B, 87 125207 (2013)   DOI
25 R. Fischer, C. O. Bretschneider, P. London, D. Budker, D. Gershoni, and L. Frydman, Phys. Rev. Lett. 111, 057601 (2013)   DOI
26 H. Wang, C. S. Shin, C. E. Avalos, S. J. Seltzer, D. Budker, A. Pines, and V. S. Bajaj, Nat. Commun. 4, 1940 (2013)   DOI
27 D. Pagliero, A. Laraoui, J. D. Henshaw, and C. A. Meriles, Appl. Phys. Lett. 105, 242402 (2014)   DOI
28 G. A. Alvarez, C. O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, and L. Frydman, Natrue Commun. 6, 8456 (2015)   DOI
29 J. P. King, K. Jeong, C. C. Vassiliou, C. S. Shin, R. H. Page, C. E. Avalos, H. Wang, and A. Pines, Nat. Commun. 6, 8965 (2015)   DOI
30 M. Drake, E. Scott, and J. A. Reimer, New J. Phys. 18, 013011 (2016)
31 J. Scheuer, I. Schwartz, Q. Chen, D. S. Sünninghausen, P. Carl, P. Hofer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M. B. Plenio, B. Naydenov, and F. Jelezko, New J. Phys. 18 ,013040 (2016)   DOI
32 C. S. Shin, C. E. Avalos, M. C. Butler, H. Wang, S. J. Seltzer, R. Liu, A. Pines, and V. S. Bajaj, Phys. Rev. B 88, 161412(R) (2013)   DOI
33 H. Wang, C. S. Shin, S. J. Seltzer, C. E. Avalos, A. Pines, and V. S. Bajaj, Nat. Commun. 5, 4135 (2014)   DOI
34 C. Mulle, X. Kong, J. M. Cai, K. Melentijevic, A. Stacey, M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer, J. F. Du, M.B. Plenio, B. Naydenov, L. P. McGuinness, and F. Jelezko, Nat. Commun. 5, 4703 (2014)   DOI
35 S. H. Choi, K. S. Han, S. K. Kwon, S. K. Nam, H. H. Choi, Moohee Lee, and Ae Ran Lim, J. Kor. Magn. Reson. Soc. 11, 64 (2007)