Browse > Article
http://dx.doi.org/10.6564/JKMRS.2016.20.4.102

Strategy for Determining the Structures of Large Biomolecules using the Torsion Angle Dynamics of CYANA  

Jee, Jun-Goo (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.20, no.4, 2016 , pp. 102-108 More about this Journal
Abstract
With the rapid increase of data on protein-protein interactions, the need for delineating the 3D structures of huge protein complexes has increased. The protocols for determining nuclear magnetic resonance (NMR) structure can be applied to modeling complex structures coupled with sparse experimental restraints. In this report, I suggest the use of multiple rigid bodies for improving the efficiency of NMR-assisted structure modeling of huge complexes using CYANA. By preparing a region of known structure as a new type of residue that has no torsion angle, one can facilitate the search of the conformational spaces. This method has a distinct advantage over the rigidification of a region with synthetic distance restraints, particularly for the calculation of huge molecules. I have demonstrated the idea with calculations of decaubiquitins that are linked via Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, or Lys63, or head to tail. Here, the ubiquitin region consisting of residues 1-70 was treated as a rigid body with a new residue. The efficiency of the calculation was further demonstrated in Lys48-linked decaubiquitin with ambiguous distance restraints. The approach can be readily extended to either protein-protein complexes or large proteins consisting of several domains.
Keywords
NMR; StNMR; Structure calculation; Complex structure; Torsion angle dynamics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. Wuthrich, NMR of Proteins and Nucleic Acids; Wiley: New York (1986)
2 T. Herrmann, P. Guntert, and K. Wuthrich, J. Mol. Biol. 319, 209 (2002)   DOI
3 J. G. Jee, and P. Guntert, J. Struct. Funct. Genomics 4, 179 (2003)   DOI
4 C. Dominguez, R. Boelens, and A. M. Bonvin, J. Am. Chem. Soc. 125, 1731 (2003)   DOI
5 T. A. Hopf, C. P. Scharfe, J. P. Rodrigues, A. G. Green, O. Kohlbacher, C. Sander, A. M. Bonvin, and D. S. Marks, Elife 3:e03430 (2014)
6 P. Guntert, C. Mumenthaler, and K. Wuthrich, J. Mol. Biol. 273, 283 (1997)   DOI
7 M. P. Williamson, and C. J. Craven, J. Biomol. NMR 43, 131 (2009)   DOI
8 D. Komander, and M. Rape, Annu. Rev. Biochem. 81, 203 (2012)   DOI
9 E. J. Eddins, R. Varadan, D. Fushman, C. M. Pickart, and C. Wolberger, J. Mol. Biol. 367, 204 (2007)   DOI
10 T. Tenno, K. Fujiwara, H. Tochio, K. Iwai, E. H. Morita, H. Hayashi, S. Murata, H. Hiroaki, M. Sato, K. Tanaka, and M. Shirakawa, Genes Cells 9, 865 (2004)   DOI
11 R. Varadan, O. Walker, C. Pickart, and D. Fushman, J. Mol. Biol. 324, 637 (2002)   DOI
12 W. J. Cook, L.C. Jeffrey, E. Kasperek, and C. M. Pickart, J. Mol. Biol. 236, 601 (1994)   DOI
13 J. G. Jee, Bull. Korean Chem. Soc. 35, 1944 (2014)   DOI
14 J. G. Jee, J. Kor. Magn. Reson. Soc. 18, 24 (2014)   DOI
15 J. G. Jee, J. Kor. Magn. Reson. Soc. 17, 11 (2013)   DOI
16 A. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, and R. C. Walker, J. Chem. Theory. Comput. 8, 1542 (2012)   DOI
17 R. Salomon-Ferrer, A.W. Gotz, D. Poole, S. Le Grand, and R.C. Walker, J. Chem. Theory. Comput. 9, 3878 (2013)   DOI
18 J. G. Jee, J. Kor. Magn. Reson. Soc. 18, 69 (2014)   DOI